

David C. Wyld et al. (Eds) : CCSEA, CLOUD, DKMP, SEA, SIPRO - 2016

pp. 63–82, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60207

A CLOUD BROKER APPROACH WITH QOS

ATTENDANCE AND SOA FOR HYBRID

CLOUD COMPUTING ENVIRONMENTS

Mário Henrique de Souza Pardo, Adriana Molina Centurion,

Paulo Sérgio Franco Eustáquio, Regina Helena Carlucci Santana,

Sarita Mazzini Bruschi and Marcos José Santana

Institute of Mathematical and Computer Sciences (ICMC)

University of São Paulo (USP)

São Carlos, Brazil
{mhpardo,amolina,psfe,rcs,sarita,mjs}@icmc.usp.br

ABSTRACT

Cloud Computing is the industry whose demand has been growing continuously since its

appearance as a solution that offers different types of computing resources as a service over the

Internet. The number of cloud computing providers grows into a run, while the end user is

currently in the position of having many pricing options, distinct features and performance for

the same required service. This work is inserted in the cloud computing task scheduling

research field to hybrid cloud environments with service-oriented architecture (SOA), dynamic

allocation and control of services and QoS requirements attendance. Therefore, it is proposed

the QBroker Architecture, representing a cloud broker with trading features that implement the

intermediation services, defined by the NIST Cloud Computing Reference Model. An

experimental design was created in order to demonstrate compliance to the QoS requirement of

maximum task execution time, the differentiation of services and dynamic allocation of services.

The experimental results obtained by simulation with CloudSim prove that QBroker has the

necessary requirements to provide QoS improvement in hybrid cloud computing environments

based on SOA.

KEYWORDS

Cloud Broker, Cloud Computing, SOA, QoS, dynamic service allocation, deadline, task

scheduling algorithm, intermediation, NIST Reference Model.

1. INTRODUCTION

The growing adoption of cloud computing as a solution to infrastructure, platform or software

offering as a service has grown so much (about 32.8% increase, according to a forecast by the

Gartner Group [1] for the year 2015) that the market and the cloud computing environments are

becoming increasingly crowded and complex.

64 Computer Science & Information Technology (CS & IT)

This complexity goes beyond the physical infrastructure of data centers, as currently the major

trend has been the multiplicity of providers and the construction of complex organizations

involving multiple data centers, such as cloud federations [2], the inter-clouds [3] [4], and hybrid

clouds [5] [6], among others. In these approaches, the complexity is revealed when we try to

provide resources for a range of users with different needs of applications and services [4],

bearing in mind the possibility that the solution to the user request may be in an environment with

multiple suppliers with infrastructure managed in completely different forms, i.e., it is a highly

heterogeneous computing environment [3] [7].

To tackle problems arising from the allocation of cloud resources and meet the demands of users

based on quality of service (QoS) requirements, there is now one of the most discussed topics in

cloud computing research field: the intermediation process and task scheduling to cloud

computing environments [3].

The recent works which focus their efforts on solving specific problems inherent in cloud

environments, such as energy efficient consumption, allocation and migration of virtual machine

instances, optimizations in data communication through computer networks within data centers

[6] [8] [9] [10], among many other issues, implement, in their methodology, cloud brokers

created with strict scheduling policies focused on system balancing for seeking specific goal.

However, the new reality of brokering activity for cloud systems is the use of an intermediary

architecture represented by a broker that may be multi-objective.

This work relates to the task scheduling and intermediation activity research field, proposing a

new Cloud Broker architecture, implemented as simulation entity for CloudSim, working this

way as an extension to this cloud computing simulation toolkit. The Broker implemented has the

characteristic of openness, i.e., is designed to be coupled to various modes of operation, using as

a basis for such implementation the NIST Cloud Computing Reference Model [11] and the

operation mode of intermediation services for the experiments.

The remainder of this paper is organized as follows: Section 2 presents the related work reviewed

and discussed; Section 3 presents in detail the new Cloud Broker Architecture implemented;

Section 4 introduces the design of experiments and the simulation scenario designed to test the

Cloud Broker; Section 5 consists of the discussion of the experimental results; Section 6 presents

the final conclusion of the work; in Section 7 are presented the acknowledgements and the last

section is a list of references.

2. RELATED WORK

The CloudSim Toolkit became an adopted framework for evaluating the test environments of

many recent jobs published on the Cloud Computing research field, which mention the tool as

relevant and capable of providing the necessary resources for modeling and simulation [12] [13]

[14] [15] [16].

In [17], the authors propose a cloud broker architecture for selecting a cloud provider from

multiple providers’ instances. The cloud broker designed measures the QoS of each provider and

sorts them according to the client's request requirements. For differentiation of cloud providers

there is the Service Measurement Index (SMI), a relative index calculated to provide the

requester a perception gap between the services of different providers. Proper provider selection

Computer Science & Information Technology (CS & IT) 65

technique called TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is

based on the establishment of a ranking for selecting an appropriate cloud provider. The

experimental results of this work were obtained from experiments on simulation CloudSim. It

conducted a set of experiments considering 6 providers and the authors' conclusion was that the

application of the chosen set of techniques allowed an efficient selection of cloud providers based

on customer requirements.

In another recent work which deals with the problem of service selection in cloud environments

with multiple providers [18], the authors propose a project through a solution approach with a

multi agent broker. The Jumper Firefly Algorithm was used in the implementation to reduce the

execution time of make span time (response time) through a status table which records past

behavior. The validation of all the propositions made at work was carried out with the aid of

CloudSim simulation environment. In the experimental results, according to statements of the

authors, the Firefly Jumper Mechanism is more effective than the standard Firefly Algorithm and

other heuristics that were tested.

In another related work that employ their efforts on rapid and effective execution of jobs sent by

users to a cloud computing environment [19], the authors propose a communication framework

between the broker elements and the virtual machines (VMs), seeking cost and execution optimal

results, that was named Broker Virtual Machine Communication Framework (BVCF). The testing

environment was constructed with assistance from CloudSim simulator and its API, creating VM

scheduling policies based on cost. In the context of the simulated environment programming were

also considered cloudlets scheduling and cloudlets relay, and the review of the implementation of

the tasks execution was carried out through the Round Robin and FCFS policies. According to the

results obtained in testing and analysis conducted by the authors of work, cost factors and task

runtime are always the primary components of the constraints of service quality required by

customer requests.

In a job that believes in the growth of the computer market demand and the evolution of the

industry into the era of cloud federations and inter-clouds [20], the authors state that the

aggregate values to cloud services that will be most valued by customers will be pricing or

ticketing policy, the allocation scheme of resources to provide the best performance as the signed

service level agreements (SLA). The implementation of the work was carried out with the aid of

CloudSim Toolkit version 3.0.3, whereby the authors implemented a broker for cloud federations,

which works with the intermediation process, interoperability and negotiation of service requests.

According to the authors and the experimental results, it is concluded that the resource allocation

model based on QoS and reimbursement worked and successfully demonstrated the applicability

and necessity of observation of the QoS degradation in complex environments inter-cloud.

In a work that implements a new scheduling model for cloud computing environments called

ICMS (Inter-Cloud Meta-Scheduling) [21], the researchers also created an extension of

CloudSim Toolkit which was named SimIC (Inter-Cloud). The goal was to meet the complex

simulation scenarios in which inter-clouds contexts are considered and the process of

intermediation requests (cloudlets) is done by multiple cloud meta-brokers running dynamic

management and real-time workloads received using a standard decision-making to made tasks

scheduling. The metrics used for the analysis were Execution Time and RTT (Round Trip Time)

and as modification factors of simulated environments were used different user submissions and

computational requirements. From the comparative experimental results between the values

66 Computer Science & Information Technology (CS & IT)

returned for the original CloudSim Toolkit and for the SimIC, it was possible to verify and

conclude that there were considerable gains in the new algorithms implemented by the ICMS

module, especially in the graphs comparing results of execution time metrics.

All related work carried out have important features and contributions related to task scheduling

to cloud computing systems using CloudSim. From the observation of all cloud broker

implementations made in related work, it is possible to see the existing gap on the issue of

standardization of a broker architecture that can be used in order to mix and permit the

development and application of various types of scheduling strategies considering multiple

service quality factors considered in the related articles. In this paper, the simulation environment

includes a QBroker Entity with QoS negotiation for incoming requests, adding a set of desirable

characteristics in simulation scenarios that want to provide more realistic and similar results to

the real-world cloud systems.

3. CLOUD BROKER PROPOSED ARCHITECTURE

This section will present the cloud broker architecture designed in this work, which was named

QBroker (QoS Broker). The goal of the implementation was to add features to existing

DatacenterBroker class in CloudSim API. The version of CloudSim considered in the

implementation of the extension was to 3.0.3.

As already mentioned, the main implementation consists of a subclass of DatacenterBroker class,

which is in org.cloudbus.cloudsim package, which was called QBroker. It is important to note

that DatacenterBroker class also has an inheritance relationship with SimEntity class belonging to

org.cloudbus.cloudsim.core package. Through inheritance it was possible to harness and hone, in

QBroker class, methods previously inherited from SimEntity and DatacenterBroker classes.

3.1 QBroker Operation Modes

One of the major new features implemented in the QBroker class is related to the operating

modes of this component in cloud architecture. According to the reference model of the NIST

[11], the operating modes are the directives that guide how cloud brokers entities must meet

customer requests and relate to the resources of service providers. Thus, NIST defines three main

models of operation: intermediation, aggregation, and arbitrage. The definition of each of the

operation modes of a cloud broker, according to direct reference to NIST [11] model, is presented

below:

� Intermediation: A Cloud Broker can increase the performance of a given service

increasing any specific capacity and providing value-added services to customers. Such

performance improvement can be achieved with the management of services, identity

management, performance reporting, enhanced security, among others.

� Aggregation: A Cloud Broker can combine and integrate multiple services in one or

more services. The Broker provides data integration and ensures secure data

communication between client and provider.

Computer Science & Information Technology (CS & IT) 67

� Arbitration: the arbitration operation mode is similar to the Services Aggregation, with

the exception that the services that are grouped are not fixed. In services arbitration, a

cloud broker has the flexibility to choose services from multiple providers’ services. To

perform such activity, for example, the broker can use a credit scoring service to evaluate

and select the provider with the best reputation for that type of service requested by the

customer.

The new QBroker entity was developed seeking the implementation of all the above operating

modes, however, for this specific paper, a version of QBroker is presented in which only the

services intermediation operation mode has been developed.

3.2 QBroker Services Intermediation

The process of services intermediation defines some actions for cloud broker in its task as

mediator between customers and cloud providers. Increase one or more capabilities of a given

service mean improving the quality of service. Therefore, this increase in the providers' service

QoS can be achieved in many ways, so that the NIST reference model left open the possibility for

the cloud brokers developers.

In this work, the mode of operation of intermediation services was designed to allow that QBroker

negotiates the execution of individual requests (cloudlets) with one or more cloud service

providers, giving priority to the QoS parameters required by the client and also ensuring the

quality of the services, so that, by detecting a degradation of service, the Broker acts allocating

new resources (VMs and/or services instances), in order to maintain the satisfactory execution

performance and the compliance with other requirements in the requests.

The operating procedure for activity flows related to QBroker Services Intermediation Algorithm

is shown in Figure 1, formatted as an UML Activity Diagram (Unified Modeling Language).

Adjustments were made in Cloudlet class from org.cloudbus.cloudsim package, in which the

following class attributes have been added:

� maxExecutionTime: variable type double in which is stored the maximum execution time

or execution deadline.

� service: variable type int to mark the requested service id.

� arrivalTime: variable type double that hosts the arrival time of cloudlet at the broker.

� clientID: variable type int used to identify the source client of a request.

� sendTime e receiveTime: are variables of type double that are used to store the time of

submission of the request by a client and the receipt of cloudlet executed on the client.

It is interesting to notice that this intermediation mode of operation in QBroker is always looking

to accomplish the QoS requirement of maximum execution time. This makes the implementation

of the operation mode fairly close to the services intermediation definition of NISTCloud

Computing Architecture [22].

This characteristic also allows customers to get the results of your requests with quality of service

in a hybrid cloud computing environment, always giving priority to the allocation of resources in

private cloud and, when needed, allocating resources in the public cloud.

68 Computer Science & Information Technology (CS & IT)

Figure 1: Activity Diagram of QBroker Service Intermediation Operation Mode

3.3 QBroker Class Simulation Events

The simulation entity QBroker has some specific events that were created in addition to support

several actions that should occur during the simulation time. For receiving individual requests

(cloudlets) the event NEW_CLOUDLET_ARRIVAL was created, through which the cloud

broker may receive individual cloudlets during the simulation. It is responsible for receiving task

routines, booking and forwarding to the scheduling function and subsequent job submission to a

datacenter.

3.4 QBroker class Relationship with other simulation components

To perform its functions during the execution of the simulations, the QBroker entity works

together with other two important classes implemented in addition: MetaCloudletScheduler class

and RequestMonitor class (which is also an extension of SimEntity class). These three classes

coexist in the same package named br.icmc.usp.lasdpc.BeQoS.classes.

Computer Science & Information Technology (CS & IT) 69

The QBroker class has an instance of RequestMonitor class, in this way, whenever an event of

arrival of individual or in group request occurs, the QBroker signals the event of arrival so that

the RequestMonitor entity receives such notification and account the requests received in cloud

broker. The MetaCloudletScheduler class serves as support for QBroker, having all methods that

implement the desired scheduling strategies for the cloud computing environment. It is through

this class that QBroker is no longer a cloud broker with a rigid systematic task scheduling,

offering now the possibility of implementing other scheduling methods. In MetaCloudlet

Scheduler are methods that allow different types of verification related to resources, whether

VMs or services, so that the mediation process is successful.

4. DESIGN OF EXPERIMENTS

In this work were planned three sets of experiments in order to test and demonstrate the features

implemented in the intermediation process performed by QBroker. All experiments were repeated

10 times, each repetition during 9000 seconds (simulation time based on the clock tick of

CloudSim) with 95% confidence interval according to the T-Student Table.

4.1 Datacenter and Virtual Machine Configuration

The characterizations adopted for cloud computing simulated scenario were standardized to the

three sets of experiments. The scenarios are set up with private cloud or hybrid cloud. The

datacenter configurations for private cloud are demonstrated in Table 1.

Table 1: Settings for Private Cloud Infrastructure.

Private Datacenter – Host Configuration

MIPS/Core: 10000

Cores/Host: 4

RAM: 8000 Mb

Network Bandwidth: 1000 Mbps

Storage: 500000 Mb

OS: Linux

VMM: Xen

Total Number of Hosts: 5

The settings of the VMs from private cloud datacenter are shown in Table 2.

Table 1: Settings for Private Cloud VMs.

Private Datacenter – VM Configuration

MIPS/Core: 10000

PEs Number(Core): 1

RAM: 2000 Mb

Network Bandwidth: 100 Mbps

Image Size: 125000 Mb

VMM: Xen

Total Number of VMs: 20

The settings used in the simulation scenario with hybrid cloud computing are designed with a

public cloud datacenter with settings as demonstrated in Table 3.

70 Computer Science & Information Technology (CS & IT)

Table 3: Settings for Public Cloud Infrastructure.

Public Datacenter – Host Configuration

MIPS/Core: 20000

Cores/Host: 8

RAM: 32000 Mb

Network Bandwidth: 10000 Mbps

Storage: 1000000 Mb

OS: Linux

VMM: Xen

Total Number of Hosts: 2

In the implemented simulation scenario, a total number of 10 VMs on public cloud datacenter

was created. The settings for Public VMs are shown in Table 4.

Table 4: Settings for Public Cloud VMs.

Public Datacenter – VM Configuration

MIPS/Core: 20000

PEs Number(Core): 1

RAM: 4000 Mb

Network Bandwidth: 1000 Mbps

Image Size: 250000 Mb

VMM: Xen

Total Number of VMs: 10

Also related to cloud computing simulated scenario, the client layer settings were implemented

considering a systematic of service demand generation and a fixed amount of customers.

4.2 Service Demand and Client Settings

With regard to service demand generating, a table of service identifiers and their demands in MI

(millions of instructions) has been implemented. The service demand for each cloudlet is

assigned based on the requested service ID as a specific exponential distribution for each service.

The exponential distribution considered has average value of 70000 MI. The total number of

possible services, which were considered in the scenario, is 5. It is important to remember that the

demand for MI is applied to the length field of each cloudlet, which specifies the size of each

task. The services demand values considered in the experiments are listed in Table 5.

Table 2: Service Demand Settings.

Service ID Demand (MI)

S1 30000

S2 50000

S3 70000

S4 90000

S5 110000

The amount of client entities was set to 150 units for all scenarios. The client type configuration,

which sets the simulation time client entity operating mode, it was sending requests in real time,

meaning that the requests are sent by clients during the course of CloudSim logical clock,

creating a more realistic and reliable arrival process to the real world. The generation of service

Computer Science & Information Technology (CS & IT) 71

IDs to be inserted into each request was also made in a random manner considering only 5

services.

To make the heterogeneous service demand, a method in the Client class generates random

values that are associated with a service ID as a distribution in percentage. This distribution

created can be seen in Table 6.

Table 3: Distribution of services random generation to the requests of client entities

Service ID Distribution (%)

S1 5.0

S2 15.0

S3 60.0

S4 19.0

S5 1.0

Still referring to the configuration of client entities, it is important to note that the QoS attribute

considered in each cloudlet was the maximum execution time (maxExecutionTime). To obtain the

value of QoS constraint field was developed a method in the Client class to ensure that the

generation of the maximum execution times are proportional to the size of each cloudlet.

Based on common settings that were explained, it was possible to obtain meaningful simulation

results, influencing the response variables considered in the experiments, which will be detailed

in the next section,

4.3 Considered Response Variables

For obtaining feedback values in sets of experiments, were selected three response variables that

are described below:

� Response time: measured in seconds considering the amount of time expended in

sending a request to the VM from one provider and its return back to the client.

� Percentage of Processed Requests: consider the requests that were processed with

Success status.

� Percentage of Unanswered Requests: consider the requests which could not be met by

the cloud broker because not meet the QoS requirement of maximum execution time

(maxExecutionTime).

5. RESULTS AND DISCUSSION

This section presents information regarding the results of the three sets of executed experimental

plans.

5.1 Disclosure of QoS Scenario

The first scenario that will be discussed is the disclosure of QoS. Table 7 summarizes the

experimental design created for the scenario in question. Abbreviations found in tables 7, 8 and 9

72 Computer Science & Information Technology (CS & IT)

on the number of VMs field whose acronyms are PRV and PUB, refer, respectively, Private

Cloud and Public Cloud.

As can be seen by observing Table 7, experiments with Round Robin Algorithm were compared

with experiments using QBroker Services Intermediation Algorithm dealings with or without

QoS.
Table 7: Experimental design for disclosure of QoS scenario.

Experiment

ID

Task Scheduling

Algorithm

Cloud

Type

Number

of VMs

Number of

Allocated Services

A Round Robin Private PRV=20 -

B Round Robin Hybrid PRV=20+PUB=10 -

C Intermediation with QoS Private PRV=10 5

D Intermediation with QoS Hybrid PRV=20+PUB=10 5

E Intermediation without QoS Private PRV=20 5

F Intermediation without QoS Hybrid PRV=20+PUB=10 5

In the experiments with intermediation were allocated the five services considered the

environment in all VMs in order to make a fair comparison with the Round Robin, which does

not have the service selection policy. The results concerning the variable average response time

set out in Figure 2.

The obtained results for average response time variable (Figure 2) show that, in private cloud

scenarios (experiments A, C and E), QBroker intermediation algorithm proved to be efficient,

since in experiment A with Round Robin, the response time was 49.08 seconds while in the

experiment E, with intermediation without QoS, obtained better performance with an average

time of 45.13 seconds (about 5.8% faster). Still by comparing experiment A with the experiment

C, i.e., considering the intermediation with QoS, the performance was even better against the two

other experiments, obtaining the value of 18.12 seconds (about 63.08% faster than the experiment

A and 59.85% faster than the experiment E).

Figure 1: Average response time graph for disclosure of QoS scenario

Although the results with average response time (Figure 2), considering the experiments with

hybrid cloud scenarios (experiments B, D and F), the QBroker intermediation algorithm also

showed gains in efficiency and performance. The experiment B, which considered using Round

Robin had the average response time of 30.86 seconds, while the experiment F considering

intermediation without QoS, got 19.32 seconds, which means better performance (about 37.40%

Computer Science & Information Technology (CS & IT) 73

more fast). In experimental examination of experiment D, considering intermediation with QoS,

the average value obtained was better than the other two experiments, resulting in 17.57 seconds

(about 43.07% faster than Experiment B and 8.9% faster compared to experiment F).

These results corroborate the premise of this paper that the new QBroker Architecture provides

performance gains for a major response variables observed by end users of cloud computing

systems, that is, the response time for service requests.

It is also possible to visualize differences in how the task scheduling algorithms behave in the

simulation scenarios according to the variables of percentage of processed requests and

percentage of unanswered requests. According to the results presented by the response variables

relating to percentages of processed and missed requests (Figures 3 and 4) stand out from the

experiments C and D, which considered scenarios with private and hybrid cloud respectively,

using intermediation algorithm with QoS, because it was the only restrictive scenarios on the

issue of rejection of requests because of violation of the maximum execution time

(maxExecutionTime) QoS parameter.

Figure 2: Average percentage of processed requests graph for disclosure of QoS scenario.

Figure 3: Average percentage of unanswered requests for disclosure of QoS scenario.

In experiment C (according to Figures 3 and 4), as the need arises to keep QoS deadline informed

as attribute for each request (cloudlet), QBroker processed 21.09% of the requests sent by clients

and rejected others 78.92%. In the experiment D, using the same premise, the QBroker processed

79.72% of the requests and rejected others 20.28%. In other experiments there was no rejection of

74 Computer Science & Information Technology (CS & IT)

requests registered and the response variable percentage of processed requests obtained the

constant value of 100%.

5.2 Service Differentiation Scenario

In the second experiment scenario, the objective was to evidence the service differentiation by

varying the amount of allocated services in the virtual machines. The characteristic to

differentiate services by the use of identifiers approaches QBroker Architecture of cloud brokers

compatible with service-oriented architectures (SOA). Table 8 shows the planning of the current

scenario of experiments.

According to the experiments plan (Table 8), it is possible to check that the setting of

experiments is a variation of the experimental design originally done in disclosure of QoS

scenario. The experiments C', D', E' and F' have the same scenario characteristics as, respectively,

experiments C, D, E and F, however, the number of services allocated in the machines is

different. In the experiments C, D, E and F are allocated 5 services in all instantiated VMs while

in experiments C', D', E' and F' the amount of allocated services in the VMs is 2. It should be

remembered that in all scenarios where the QBroker used intermediation algorithm, existing

services use identifiers numbered from 1 to 5.

Table 8: Design of experiments for service differentiation scenario.

Experiment

ID

Task Scheduling

Algorithm

Cloud

Type

Number

of VMs

Number of

Allocated Services

C Intermediation with QoS Private PRV=20 5

D Intermediation with QoS Hybrid PRV=20+PUB=10 5

E Intermediation without QoS Private PRV=20 5

F Intermediation without QoS Hybrid PRV=20+PUB=10 5

C' Intermediation with QoS Private PRV=20 2

D' Intermediation with QoS Hybrid PRV=20+PUB=10 2

E' Intermediation without QoS Private PRV=20 2

F' Intermediation without QoS Hybrid PRV=20+PUB=10 2

The information of the results of the services differentiation scenario regarding the average

response time are shown in Figure 5.

It is possible to see, through the table 8, that the number of services for each VM in this scenario

is preset at the beginning of simulation, so there is no occurrence of attempted allocation of new

services. In the specific case of the experiments C', D', E' and F', the instantiated services in each

VM uses a method of normal distribution for the 5 considered services.

According to Figure 5, for this disclosure of service differentiation scenario, it is possible to note

that experiments C and D have the very close results, although not statistically equivalent.

Comparing experiments C and C', it can see that C' got an average response time faster with

15.13 seconds. The same situation occurs with the experiments D and D', in which case the

experiment D' performed better response time, which value was 14.02 seconds.

Computer Science & Information Technology (CS & IT) 75

Figure 4: Average response time graph for service differentiation scenario.

The justification for these values is precisely the question of the distribution of services, as in the

case of experiments C and D, all possible services are instantiated on all scenario's VMs, so that

while it may offer more scheduling possibilities for requests, end up making higher the size of

average queue, and in this situation, there is a decrease in response time variable and there is also

a discard percentage slightly higher.

Experiments with only two services and use of intermediation with QoS (as Figure 5), i.e., C' and

D', although become the most restrictive scenario for scheduling options of requests for VMs,

generate an average queue time differentiated of a VM to another, because those services whose

demand exponential function are larger are not instantiated on all VMs, leading to this situation

in particular, a better performance in response time variable.

Also relating to information from experiments in Figure 5, in experiments E, F, E' and F', the

results have another positioning. As in experiments E and F has all instantiated services in all

VMs of the scenarios and the availability ends thus being wider, and, as already explained,

considering that the last activity of intermediation without QoS is schedule the request to the VM

that has the service requested instantiated with the lower queue, in such cases, scenarios with

more services offer more scheduling opportunities, which makes the values of average times of E

and F the experiments, i.e., 45.13 seconds and 19.32 seconds respectively, perform better than the

experiments E' and F' having two instantiated services in all scenario's VMs.

The figures 6 and 7 have the performance graphs of percentage of processed and missed requests

to the current experiments scenario.

To disclosure a little more the argumentation for the average response time variable, it is possible

to observe, as figures 6 and 7, that experiments C and D gave a lower value in terms of processed

requests and in turn, higher percentage of unanswered requests (figure 7) as arguments already

provided on considerations involving the response time variable.

According to figures 6 and 7, in other experiments (E, F, E' and F') which do not consider the

QoS parameter maxExecutionTime, always get 100.0% of processed requests, so that there are no

unanswered requests.

76 Computer Science & Information Technology (CS & IT)

Figure 6: Average percentage of processed requests graph for service differentiation scenario

Figure 7: Average percentage of unanswered requests graph for service differentiation scenario

5.3 Dynamic Service Allocation Scenario

In the third experiments scenario the main objective was to highlight the dynamic allocation of

services at runtime conducted by QBroker. Table 9 has the experiments planning information

created for the experimental scenario explained.

Table 9: Experimental design of dynamic services allocation scenario.

Experiment

ID

Task Scheduling

Algorithm

Cloud

Type

Number of VMs Number of

Allocated

Services

C' Intermediation with QoS Private PRV=20 2

D' Intermediation with QoS Hybrid PRV=20+PUB=10 2

E' Intermediation without QoS Private PRV=20 2

F' Intermediation without QoS Hybrid PRV=20+PUB=10 2

C'' Intermediation with QoS Private PRV=(10 + 10 Stdby) 2

D'' Intermediation with QoS Hybrid PRV=(10 + 10 Stdby) + PUB=(10+10 Stdby) 2

E'' Intermediation without QoS Private PRV=(10 + 10 Stdby) 2

F'' Intermediation without QoS Hybrid PRV=(10 + 10 Stdby) + PUB=(10+10 Stdby) 2

Computer Science & Information Technology (CS & IT) 77

According to the experiments plan (Table 9), it is possible to note the fact that were made a

combination of experiments with fixed number of services (C', D', E' and F') with four other

experiments that perform dynamic allocation of services. It can also to note that in the private

cloud experiments, only 5 VMs have 2 instantiated services while the other 15 VMs remain in

standby state. In the scenario with hybrid cloud, private cloud is initialized with the same

previous configuration and the public cloud is initialized with all the VMs in standby state.

The results concerning the average response time variable for current scenario are shown in

Figure 8.

From graph analysis, it can be observed that the experiments which consider intermediation

algorithm with QoS (C', D', C'' and D'') have a difference in performance, is noted that the

experiments with dynamic service allocation the response time was longer.

The response time in experiment C', which considered static service allocation and private cloud

was 14.66% faster than C'', with dynamic service allocation. A similar situation occurs between

experiments with hybrid cloud in the scenarios, i.e., the experiment D', considering static service

allocation, obtained response time of 17.67% faster than the experiment D'', which used dynamic

service allocation. This result was expected because, at the beginning of the execution of

simulation experiments, the experiments C'' and D'' has only 5 VMs available for task scheduling,

so the dynamic allocation of services is executed when there is real necessity due to the breach of

QoS parameter maximum execution time.

Figure 5: Average response time graph for dynamic service allocation scenario.

Still referring to Figure 8, the experiments that have been configured with intermediation without

QoS (E', F', E'' and F'') have a different result because, in this particular case, the experiments

with dynamic allocation of services have outstanding difference, with better performance.

Experiments E' and F' start with 2 services using a normal distribution. Due to this justified

reason, the experiments E 'and F' end up having a lower performance for response time variable

because the arrangement of services is predefined at the start of the simulation.

The experiments E'' and F'', have only 5 VMs that are initially initialized with services using the

same uniform distribution method. Thus, by effecting on demand service allocation, they have

78 Computer Science & Information Technology (CS & IT)

significant advantage, since the services are allocated on the basis of real need and as services are

required in requests.

Figures 9 and 10 present the result of information of variable percentage of processed and missed

requests. The experiments in which used the intermediation algorithm without QoS (E', F', E'' and

F'') have a similar behavior, i.e., the variable percentage of processed requests in these

experiments was 100.0% and there was no unanswered request.

Figure 6: Average percentage of processed requests graph for dynamic service allocation scenario.

Already in the experiments with intermediation with QoS, in the case of experiments considering

private cloud C' and C'', their values have percentages of processed and unanswered requests

next, revealing a similar behavior in the restricted environment of private cloud resources. As for

experiments D' and D'', which consider hybrid cloud, the experiment D'' achieved a better result

because, processed a higher percentage of requests, this takes place, as already explained,

because of the dynamic service allocation at runtime, what revealed a QBroker feature, that

makes the attendance to virtual clients more profitable and causes almost an adaptive effect when

you look at the records of the allocation of services performed during the execution of the

experiment in CloudSim output report.

Figure 7: Average Percentage of unanswered requests for dynamic service allocation scenario.

Computer Science & Information Technology (CS & IT) 79

The results of this scenario show that the resource of dynamic service allocation, present in

QBroker service intermediation operation mode, is an important differential in the reproduction

of real situations of task scheduling to cloud computing systems.

6. CONCLUSION

In this work was presented a cloud broker architecture that provides several features to obtain

QoS in hybrid cloud computing environments. To this end, it was implemented, based on the

service intermediation definition of NIST cloud computing reference model, a task scheduling

policy that considers maximum deadlines for execution of service requests, the allocation control

and management of the amount number of services in each VM and the dynamic service

allocation on-demand during the execution of simulations. These three key features help the

intermediator component of the architecture, that is, help the QBroker to increase the QoS of the

services requested on demand, a fact that has been proven through design of experiments

performed and presented in three scenarios.

It is worth noting that the Broker is a component that is part of a cloud computing architecture

called CloudSim BEQoS (Bursting Energy and Quality of Service), developed by the Laboratory

of Distributed Systems and Concurrent Programming (LaSDPC), which is linked to the ICMC

University of São Paulo Campus of São Carlos. The results presented in this work highlight the

functionality of QBroker operation mode named as service intermediation (with or without QoS).

As the information presented from experimental results, it is possible to see the interesting

contributions on the simulation of hybrid cloud computing environments through CloudSim

coupled to QBroker, MetaCloudletScheduler and other components of BEQoS Architecture.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from the Brazilian Foundations FAPESP, CNPq

and CAPES for the projects under development at the Distributed System and Concurrent

Program Group of the Computes Systems Department at ICMC - USP.

REFERENCES

[1] S. Moore, “Gartner Says Worldwide Cloud Infrastructure-as-a-Service Spending to Grow 32.8

Percent in 2015,” 2015. [Online]. Available: http://www.gartner.com/newsroom/id/3055225.

[Accessed: 07-Oct-2015].

[2] M. Salama and A. Shawish, “A QoS-Oriented Inter-cloud Federation Framework,” 2014 IEEE 38th

Annu. Comput. Softw. Appl. Conf., no. Cc, pp. 642–643, Jul. 2014.

[3] S. Sotiriadis, N. Bessis, and N. Antonopoulos, “Towards Inter-cloud Schedulers: A Survey of Meta-

scheduling Approaches,” 2011 Int. Conf. P2P, Parallel, Grid, Cloud Internet Comput., pp. 59–66,

Oct. 2011.

[4] M. Aazam and E. N. Huh, “Inter-cloud Media Storage and Media Cloud Architecture for Inter-cloud

Communication,” 2014 IEEE 7th Int. Conf. Cloud Comput., pp. 982–985, Jun. 2014.

[5] M. H. Sqalli, M. Al-saeedi, F. Binbeshr, and M. Siddiqui, “UCloud: A simulated Hybrid Cloud for a

university environment,” 2012 IEEE 1st Int. Conf. Cloud Netw., pp. 170–172, Nov. 2012.

80 Computer Science & Information Technology (CS & IT)

[6] V. Bagwaiya and S. K. Raghuwanshi, “Hybrid approach using throttled and ESCE load balancing

algorithms in cloud computing,” 2014 Int. Conf. Green Comput. Commun. Electr. Eng., pp. 1–6,

Mar. 2014.

[7] M. Aazam and E.-N. Huh, “Broker as a Service (BaaS) Pricing and Resource Estimation Model,”

2014 IEEE 6th Int. Conf. Cloud Comput. Technol. Sci., pp. 463–468, Dec. 2014.

[8] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing scheduler for mobile cloud computing

environments,” 2014 IEEE Conf. Comput. Commun. Work. (INFOCOM WKSHPS), pp. 404–409,

Apr. 2014.

[9] R. S. Moorthy, T. S. Somasundaram, and K. Govindarajan, “Failure-aware resource provisioning

mechanism in cloud infrastructure,” 2014 IEEE Glob. Humanit. Technol. Conf. - South Asia Satell.,

pp. 255–260, Sep. 2014.

[10] E. Hwang and K. H. Kim, “Minimizing Cost of Virtual Machines for Deadline-Constrained

MapReduce Applications in the Cloud,” 2012 ACM/IEEE 13th Int. Conf. Grid Comput., pp. 130–

138, Sep. 2012.

[11] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, “NIST Cloud Computing

Reference Architecture Recommendations of the National Institute of Standards and.”

[12] R. N. Calheiros, R. Ranjan, A. Beloglazov, and A. F. De Rose, “CloudSim : a toolkit for modeling

and simulation of cloud computing environments and evaluation of resource provisioning

algorithms,” no. August 2010, pp. 23–50, 2011.

[13] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-Based Visual

Modeller for Analysing Cloud Computing Environments and Applications,” 2010 24th IEEE Int.

Conf. Adv. Inf. Netw. Appl., pp. 446–452, 2010.

[14] X. Li, X. Jiang, P. Huang, and K. Ye, “DARTCSIM : AN ENHANCED USER-FRIENDLY CLOUD

SIMULATION SYSTEM BASED ON CLOUDSIM WITH,” 1857.

[15] S. Long and Y. Zhao, “A Toolkit for Modeling and Simulating Cloud Data Storage: An Extension to

CloudSim,” 2012 Int. Conf. Control Eng. Commun. Technol., pp. 597–600, Dec. 2012.

[16] S.-M. Jung, N.-U. Kim, and T.-M. Chung, “Applying Scheduling Algorithms with QoS in the Cloud

Computing,” 2013 Int. Conf. Inf. Sci. Appl., pp. 1–2, Jun. 2013.

[17] R. Achar and P. S. Thilagam, “A broker based approach for cloud provider selection,” 2014 Int. Conf.

Adv. Comput. Commun. Informatics, pp. 1252–1257, Sep. 2014.

[18] N. G. and J. G., “A Multi-agent Brokering Approach and Jumper Firefly Algorithm for Job

Scheduling in Cloud Computing,” 2014 Int. Conf. Intell. Comput. Appl., pp. 52–58, Mar. 2014.

[19] G. Raj and S. Setia, “Effective Cost Mechanism for Cloudlet Retransmission and Prioritized VM

Scheduling Mechanism over Broker Virtual Machine Communication Framework,” vol. 2, no. 3, pp.

41–50, 2012.

[20] M. Aazam and S. Korea, “Advance Resource Reservation and QoS Based Refunding in Cloud

Federation,” pp. 139–143, 2014.

Computer Science & Information Technology (CS & IT)

[21] S. Sotiriadis, N. Bessis, and N. Antonopoulos, “Towards Inter

Analysis: Exploring Service-Oriented Benchmarks of Clouds in SimIC,” 2013 27th Int. Conf. Adv.

Inf. Netw. Appl. Work., pp. 765

[22] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud computing reference architectu

Proc. - 2011 IEEE World Congr. Serv. Serv. 2011, pp. 594

AUTHORS

Mário Henrique de Souza Pardo

from the University of the Sacred Heart (USC), Bauru / SP, Brazil, in 2001.

concluded a master's degree in Computer Science from UNIVEM, Marilia / SP,

Brazil in 2006. He is currently a PhD student in research

and Concurrent Programming from the University of São Paulo (USP), São Carlos /

SP, Brazil, supervised by Professor Dr. Regina H. C. Santana. His current research

interest is focused on the study of Cloud Computing, specificall

with QoS for complex cloud computing environments. Also deals with computer

systems performance evaluation and simulation of cloud computing through discrete

event simulation.

Adriana Molina Centurion received the BS degree in Compu

Marilia University (UNIMAR) in 1995; the MS degree (in 1998) and PhD degree (in

2015) in Computer Science and Computational Mathematics from the University of

Sao Paulo (USP). She has experience in Computer Science with emphasis in

Distributed Computer Systems and Performance Evaluation and 10 years of

experience in management of projects and services in the area of Information

Technology. She currently is professor at Institute of Education, Science and

Technology of Sao Paulo (IFSP). Her

Evaluation, Distributed Systems, Service Oriented Architecture, Cloud Computing,

Simulation, Workload Modeling and Burstiness Phenomenon.

Paulo Sérgio Franco Eustáquio graduated Bachelor in Computer Science from the

Pontifical Catholic University of Minas Gerais (PUC), Pocos de Caldas / MG, Brazil,

holds a Master degree in Computer Science from the University of São Paulo (USP),

São Carlos / SP, Brazil. It is a PhD student at Institute of Mathematics and Computer

Sciences (ICMC) at USP of São Carlos / SP, Brazil, supervised by Professor Dr.

Sarita M. Bruschi. His research interests are: Cluster, Grid and Cloud Computing,

Web Servers Architecture, intake systems and task scheduling for distributed

computing systems, client-side QoS and provider

Computing and efficient energy consumption for Computing Cloud environments.

Regina Helena Carlucci Santana
from the School of Engineering of São Carlos

Science from the Institute of Mathematical Sciences of São Carlos (1985) and PhD in

Electronics and Computing - University of Southampton (1989). She is currently

Associate Professor at the University of São Paulo. She has

Science, with emphasis on Performance Evaluation, acting on the following topics:

performance measurement, simulation, distributed simulation, tasks and process

scheduling and parallel computing. Other topic of her interest in resear

Distributed Computational Systems Architecture involving Cluster, Grid, Cloud

Computing and others.

Computer Science & Information Technology (CS & IT)

S. Sotiriadis, N. Bessis, and N. Antonopoulos, “Towards Inter-cloud Simulation

Oriented Benchmarks of Clouds in SimIC,” 2013 27th Int. Conf. Adv.

Inf. Netw. Appl. Work., pp. 765–771, Mar. 2013.

R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud computing reference architectu

2011 IEEE World Congr. Serv. Serv. 2011, pp. 594–596, 2011.

Mário Henrique de Souza Pardo received bachelor's degree in Systems Analysis

from the University of the Sacred Heart (USC), Bauru / SP, Brazil, in 2001.

concluded a master's degree in Computer Science from UNIVEM, Marilia / SP,

Brazil in 2006. He is currently a PhD student in research line of Distributed Systems

and Concurrent Programming from the University of São Paulo (USP), São Carlos /

SP, Brazil, supervised by Professor Dr. Regina H. C. Santana. His current research

interest is focused on the study of Cloud Computing, specifically for task scheduling

with QoS for complex cloud computing environments. Also deals with computer

systems performance evaluation and simulation of cloud computing through discrete

received the BS degree in Computer Science from

Marilia University (UNIMAR) in 1995; the MS degree (in 1998) and PhD degree (in

2015) in Computer Science and Computational Mathematics from the University of

Sao Paulo (USP). She has experience in Computer Science with emphasis in

uted Computer Systems and Performance Evaluation and 10 years of

experience in management of projects and services in the area of Information

Technology. She currently is professor at Institute of Education, Science and

Technology of Sao Paulo (IFSP). Her research interests include Performance

Evaluation, Distributed Systems, Service Oriented Architecture, Cloud Computing,

Simulation, Workload Modeling and Burstiness Phenomenon.

graduated Bachelor in Computer Science from the

Pontifical Catholic University of Minas Gerais (PUC), Pocos de Caldas / MG, Brazil,

holds a Master degree in Computer Science from the University of São Paulo (USP),

São Carlos / SP, Brazil. It is a PhD student at Institute of Mathematics and Computer

ences (ICMC) at USP of São Carlos / SP, Brazil, supervised by Professor Dr.

Sarita M. Bruschi. His research interests are: Cluster, Grid and Cloud Computing,

Web Servers Architecture, intake systems and task scheduling for distributed

side QoS and provider-side QoS considering Green

Computing and efficient energy consumption for Computing Cloud environments.

Regina Helena Carlucci Santana graduated in Electrical Electronic Engineering

from the School of Engineering of São Carlos (1980), Master degree in Computer

Science from the Institute of Mathematical Sciences of São Carlos (1985) and PhD in

University of Southampton (1989). She is currently

Associate Professor at the University of São Paulo. She has expertise in Computer

Science, with emphasis on Performance Evaluation, acting on the following topics:

performance measurement, simulation, distributed simulation, tasks and process

scheduling and parallel computing. Other topic of her interest in research is

Distributed Computational Systems Architecture involving Cluster, Grid, Cloud

 81

cloud Simulation Performance

Oriented Benchmarks of Clouds in SimIC,” 2013 27th Int. Conf. Adv.

R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud computing reference architecture,”

82 Computer Science & Information Technology (CS & IT)

Sarita Mazzini Bruschi graduated in Bachelor of Computer Science from Paulista

State University “Julio de Mesquita Filho” (1994), Master degree in C

Science from the University of São Paulo (1997) and PhD in Computer Science from

the University of São Paulo (2002). She is currently Doctor Professor MS3 RDIDP at

the University of São Paulo. She has expertise in Computer Science, with emphasis

on Performance Evaluation, acting on the following topics: performance evaluation,

simulation, tasks and process scheduling in Cloud Computing, Green Computing,

Educational Environments and Operating System.

Marcos José Santana graduated in Electrical Elec

School of Engineering of São Carlos (1980), Master degree in Computer Science

from the Institute of Mathematical Sciences of São Carlos (1985) and PhD in

Electronics and Computing - University of Southampton (1989). He is curren

Associate Professor at the University of São Paulo. He has expertise in Computer

Science, with emphasis on performance evaluation, acting on the following topics:

performance evaluation, web services, cluster computing, grid computing, cloud

computing, process scheduling, parallel computing, simulation and load balancing for

distributed systems. Coordinator of Computer Engineering at ICMC since 2002 to

2011 and Chief of the Computer Systems Department since 2010.

Computer Science & Information Technology (CS & IT)

graduated in Bachelor of Computer Science from Paulista

State University “Julio de Mesquita Filho” (1994), Master degree in Computer

Science from the University of São Paulo (1997) and PhD in Computer Science from

the University of São Paulo (2002). She is currently Doctor Professor MS3 RDIDP at

the University of São Paulo. She has expertise in Computer Science, with emphasis

Performance Evaluation, acting on the following topics: performance evaluation,

simulation, tasks and process scheduling in Cloud Computing, Green Computing,

Educational Environments and Operating System.

graduated in Electrical Electronic Engineering from the

School of Engineering of São Carlos (1980), Master degree in Computer Science

from the Institute of Mathematical Sciences of São Carlos (1985) and PhD in

University of Southampton (1989). He is currently

Associate Professor at the University of São Paulo. He has expertise in Computer

Science, with emphasis on performance evaluation, acting on the following topics:

performance evaluation, web services, cluster computing, grid computing, cloud

process scheduling, parallel computing, simulation and load balancing for

distributed systems. Coordinator of Computer Engineering at ICMC since 2002 to

2011 and Chief of the Computer Systems Department since 2010.

