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ABSTRACT 

 

To reduce the size of the biosignal data is important because a huge amount of data is made by 

various experiments. In the paper, we efficiently compress the excitatory postsynaptic potentials 

(EPSPs) which is one of the biosignal types. To the best of authors' knowledge, EPSPs 

compression has not been studied yet. The EPSP signal has a feature that the adjacent signals 

in single excitatory postsynaptic potential have similar characteristics. Using this feature, we 

propose a method which removes temporal redundancy and statistical redundancy of EPSPs. 

The compressed and reconstructed EPSPs are similar to the original signal without the loss of 

analytic information.  
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1. INTRODUCTION 
 

Biosignals contain highly important information with which researchers in neuroscience and 

neural engineering fields attempt to disclose the neurological mechanisms of living organisms by 

measuring and analyzing various biosignals. Biosignals can be recorded using a variety of forms 

such as electroencephalogram (EEG), electrocorticography (ECoG), neural spike train, 

electrocardiography (ECG), electromyography (EMG), and excitatory postsynaptic potentials 

(EPSPs). To acquire more information about living organisms, researchers are recording 

biosignals by increasing the number of sensors, the measurement time, the number of experiment 

samples, and the measurement frequency. As a result, storage space, analysis time and data 

bandwidth for biosignals are being increasing as well. These problems can be solved with 

integrated memory chips, fast data processors and data communication technologies, but a more 

efficient method is to use data compression technology with which the biosignal data size is 

reduced while minimizing information loss.  

 

Many data compression researches have been conducted to achieve the above-mentioned goals in 

recent years [1-5]. Sriraam and Eswaran [1] compressed EEG obtained from the scalp. Salman et 

al. [2] restored EMG using convex optimization to reduce energy consumption. Allstot et al. [3] 
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conducted a study similar to [2] using ECG signals. In addition, Hegde et al. [4] proposed a 

compression method by creating a neuronal spike train model.  

 

There are other studies about the compression of biosignals as well, but most studies have 

concentrated on the development of signal compression technology for EEG, ECoG, and neural 

spike trains acquired from in-vivo experiments. Although in-vitro or ex-vivo experiments are 

important in studying the neurological mechanism and biosignals recorded from these 

experiments require a large storage space [6-9], no study on the compression of EPSPs has been 

done. In general, EPSPs create data of 16 Kbits (10,000 Hz × 0.1 sec. × 16 bits) in a single 

sensor with a single measurement. Assuming that 400 repetitive experiments using four to eight 

measurement sensors are conducted, the data recorded in a single experiment is approximately 

26~51 Mbits, which is very large. In addition, experiments related to EPSPs measure biosignals 

through a large number of experiment samples with various parameters. As a result, actual data 

amounts could increase further. 

 

This paper proposes a method that can compress EPSPs signals within a range that has no effect 

on the analysis of the EPSPs. The EPSPs signal occurs in synapses where two neurons are close 

to each other and it is created because the membrane potential of neurons behind the synapse 

increases due to neurotransmitters secreted from neurons in front of the synapse. Thus, changes 

in the EPSPs signal over time are slow and not large compared to neural spike trains or EEG. 

Inspired by this fact, EPSPs are compressed by eliminating information redundancy between 

adjacent signals.  

 

This paper deals with the EPSPs signal which has not been tried for compression. The proposed 

method is suitable for the features of the EPSPs signal and includes uncomplicated arithmetic 

operations.  

 

2. MATERIALS AND METHODS 

 

2.1. Materials 

EPSPs were measured via neurons of the hippocampus, which plays an important role in learning 

and memory. EPSPs signals were measured when hippocampus slices obtained from mice were 

stimulated. Normally, a single mouse has four to six slices, and a single slice can be a sensing 

channel. For both long-term potentiation (LTP) and long-term depression (LTD), experiments 

were conducted for 100 minutes, and the data for 80 minutes were used to draw a slope graph. A 

single EPSPs signal was measured every 15 seconds. The LTP and LTD experiments were 

conducted 381 times and 435 times, respectively. During the experiment, slices were immersed in 

an ACSF solution at approximately 28℃ while bubbling was maintained as a mixed gas of 95% 

oxygen and 5% carbon dioxide was introduced at a rate of 4 ml/min for pH adjustment. The LTP 

was induced by providing theta burst stimulation (TBS) for one minute 40 minutes after the 

experiment started while LTD was induced by providing single-pulse low-frequency stimulation 

(SP-LFS) six times per minute for 15 minutes. 

 

2.2. Methods 

To compress the signals, it is necessary to eliminate temporal redundancy and statistical 

redundancy. In this paper, two signal-processing filters were used to eliminate temporal 

redundancy. The first filter was a low-pass filter (LPF), which passes only frequencies below 300 
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Hz, and the second filter was a first-order difference filter that calculated a difference between 

adjacent EPSPs signals. Since adjacent signals in single EPSPs change slowly and have similar 

characteristics, EPSPs after filtering become sparse. 

 

Once temporal redundancy is eliminated, a compressed sensing technique was applied to 

eliminate statistical redundancy in spare EPSPs [10]. Assuming that the signal to be compressed 

is x ∈ ℝ�×� and the compressed signal is y ∈ ℝ�×�, then it can be expressed as follows: 

 

                                                             y = 	
                                                                              (1) 

               
where 	 ∈ ℝ�×� is called a sensing matrix, which uses a binary matrix consisting of 0 and 1 in 

general. The most important point in compressed sensing is to express a signal to be sparse. To 

do this, conventionally, new sparse vector z ∈ ℝ�×� and dictionary matrix D ∈ ℝ�×� are 

introduced so that x is expressed with z and D, thereby generating sparse x.. A matrix used in D 

is an inverse discrete cosine transform (DCT) or inverse discrete wavelet transform (DWT), in 

which z uses DCT or DWT coefficients. This procedure is quite complex. However, in this paper, 

we easily obtain sparse x by eliminating temporal redundancy without using conventional 

method. Since EPSPs show slow transition in time, the spare x is obtained by filtering EPSPs 

with a first-order difference filter. 

Block sparse Bayesian learning-bound optimization (BSBL-BO) [11] was applied to restore x� 

from the compressed EPSPs signal y. The compression ratio (CR) was calculated using 

CR =
�
� ������ �� ���� �� 


�
� ������ �� ���� �� �
.                                                            (2) 

A compression ratio of LTP and LTD has three values: 2, 3, and 4. The higher the compression 

ratio, the more often compression occurs. 

To compare the similarity between restored and original signals, the normalized mean square 

error (NMSE) [12] was used. 

NMSE =
‖
 
�‖!

!

‖
‖!
!                                                                           (3) 

where x is an original EPSPs signal and 
� is a restored EPSPs signal. The closer the NMSE value 

is to 0, the closer it is to the original signal. 

3. RESULTS 

 
Figure 1 shows the comparison of the original single EPSPs signal, 
 and the restored single 

EPSPs signal, 
� for LTP and LTD. In the figure, a compression ratio was set to 2; a dotted line 

represents the original EPSPs signal while a solid line represents the recovered EPSPs signal. 

Figure 2 shows the comparison between the original EPSPs and the restored signals, depicting 

NMSE compared over various compression ratios. For LTP, depending on compression ratios 2, 

3, and 4, the mean and standard deviation (STD) of the NMSE were 0.020±0.014, 0.15±0.032 

and 0.35±0.060, respectively. For LTD, depending on the compression ratio, the mean and STD 

were 0.084±0.021, 0.18±0.021 and 0.46±0.026, respectively. As the compression ratio becomes 

lower, which means more compression, the NMSE increases, which means the restoration 

performance decreases. 
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Figure 1. Comparison of original signal and recovered signal. They are the single EPSPs signals generated 

after the stimulation (CR = 2). 

 
 

Figure 2. NMSE mean and STD comparison according to compression ratio. NMSE compares the 

difference between the original signal and the recovered signal. 

 
 

Figure 3. Single EPSPs signal in which a section slope is calculated. The two points in the middle are a 

1/3~2/3 section designated for the slope calculation. 
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Figure 4. Comparison of changes in slopes calculated from original single EPSPs signals and recovered 

single EPSPs signals. On the time axis in the figure, 0 refers to a time when the stimulation was given and 

the slope change over time from 20 minutes prior to the stimulation and 60 minutes after the stimulation, 

which was a total of 80 minutes, shown as a percentage. Each point represents a slope mean of EPSPs 

signals calculated every one minute. The values in the brackets refer to compression ratios. s̅(1) means the 

slope without compression. 

To analyze EPSPs signals in general, the slope in temporal EPSPs is compared before and after 

the stimulation is given. For the first step in the comparison, a slope was calculated as a section 

of 1/3~2/3 set in the single EPSPs signal slope, as shown in Figure 3. Each single EPSPs signal 

has its own single calculated slope. A method of calculating a slope is to divide changes in 

potential in the designated section by time. As a next step, a mean is calculated every one minute 

using a single EPSPs signal slope in the section from 20 minutes prior to stimulation to 60 

minutes after stimulation. The baseline that is a criterion for comparison before and after 

stimulation is a slope mean of the EPSPs signal calculated from 20 minutes prior to stimulation 

until the stimulation was given; this value was again converted into 100% proportion. All slope 

means obtained every minute are normalized using the above mentioned criterion, and the slope, 

)̅(*) calculated by 

)̅(*) =
+(,)

-

.
∑ +0(,)

× 100                                                                            (4) 

where )(*) is the EPSPs slope whose means are obtained every one minute. )2(*) is a part of 

)(*) that corresponds to the baseline section which is for 20 minutes prior to stimulation. 

 
�

�
∑ )2(*) is the mean of )2(*). This )̅(*) is the normalized slope value of )(*). 

Figure 4 shows the normalized slope, )̅(*) from the original EPSPs and the recovered ones. For 

the low compression ratio, the figure shows that the slope graph is very similar to the slope of the 

original signal. When the LTD is restored with a compression ratio of 4, the slope value seems to 

change more than the slope of the original signal, but it did not affect the overall slope trend 

significantly. 

4. CONCLUSION 

 
EPSPs signals have been studied by many researchers in recent years and require a large storage 

capacity whenever experiments are conducted. In addition, researchers set various parameters to 

conduct experiments. Because of this, it is very important to reduce the data size of EPSPs 

signals. However, unlike other biosignals, no studies have been done on EPSPs compression. In 

this study, an efficient compression method was proposed without any problems in analyzing 

EPSPs. Using the proposed method, EPSPs signals can be stored and analyzed with a smaller 

amount of data than that of the original signals. 
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