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ABSTRACT

In this paper, we consider first-order mathematical fuzzy logic expanded by many hedges. This
is based on the fact that, in the real world, many hedges can be used simultaneously, and some
hedge modifies truth (or meaning of sentences) more than another hedge. Moreover, each hedge
may or may not have a dual one. We expand two axiomatizations for propositional
mathematical fuzzy logic with many hedges to the first-order level and prove a number of
completeness results for the resulting logics. We also consider logics with many hedges based
on A -core fuzzy logics.
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1. INTRODUCTION

Extending logical systems of mathematical fuzzy logic (MFL) with hedges is axiomatized
by Hajek [1], Vychodil [2], Esteva et al. [3], among others. Hedges are called truth-
stressing or truth-depressing if they. respectively, strengthen or weaken the meaning of
the applied proposition. Intuitively, on a chain of truth values, the truth function of
a truth-depressing (resp., truth-stressing) hedge (connective) is a superdiagonal (resp.,
subdiagonal) non-decreasing function preserving 0 and 1. In [1, 2, 3], logical systems of
MFL are extended by a truth-stressing hedge and/or a truth-depressing one.

However, in the real world, we often use many hedges, e.g., very, highly, rather, and slightly,
at the same time to express different levels of emphasis. Furthermore, a hedge may or
may not have a dual one, e.g., slightly (resp., rather) can be seen as a dual hedge of very
(resp., highly). Therefore, in [4, 5], Le et al. propose two axiomatizations for propositional
logical systems of MFL with many hedges. In the axiomatization in [5], each hedge does
not have any dual one whereas in the axiomatization in [4], each hedge can have its own
dual one. In [5, 6], logical systems with many hedges for representing and reasoning with
linguistically-expressed human knowledge are also proposed.
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Moreover, since first-order logic is more powerful than propositional logic in terms of
knowledge representation and reasoning. In this paper, we expand the axiomatizations in
[4, 5] to the first-order level and prove a number of completeness results for the resulting
logics w.r.t. the underlying logic. More concretely, we propose first-order fuzzy logics with
many hedges based on a first-order core fuzzy logie for two cases: (i) each hedge does not
have a dual one, and (ii) each hedge can have its own dual one. Then, we prove that
the new first-order logics are a conservative expansion of the underlying first-order core
fuzzy logic and gives a characterization of their strong completeness, especially, the strong
standard completeness. We also discuss logics with many hedges based on A-core fuzzy
logics, which are extensions of core fuzzy logics by A connective.

The remainder of the paper is organized as follows. Section 2 gives an overview of notions
and results of MFL used in this paper and the two axiomatizations for propositional MFL
with many hedges proposed in [4, 5]. Section 3 presents first-order MFL with many hedges
and proves a number of completeness results. Section 4 discusses logics with many hedges
hased on A-core fuzzy logics. Section 5 concludes the paper.

2. PRELIMINARIES

2.1. Preliminaries on Mathematical Fuzzy Logic

Let L be a propositional logic in a language £, a set of connectives with finite arity. A truth
constant 7 is a special formmula whose truth value under every evaluation is r. Formulae
are built from variables and truth constants using connectives in £. Each evaluation e of
variables by truth values uniquely extends to an evaluation e(y) of all formulae ¢ using
truth functions of connectives. A formula ¢ is called an I-tautology if e(y) = 1 for all
evaluations e. Several 1-tautology formmilae are taken as arioms of the logic. A theory is
a set of formulae. An evaluation e is called a model of a theory T if e(p) =1, Vo e T. A
proof in T is a sequence @1,. ..., of formulae whose each member is either an axiom of
the logic or a member of T or follows from some preceding members of the sequence using
the deduction rule(s) of the logic. If ¢ is the last member of a proof in T, ¢ is called a
provable formula, denoted T Fp, . If T = @,  is said to be provable in the logic [7, 8].

Most logical systems called core fuzzy logics are a finitary Rasiowa-implicative logic [8].
Every finitary Rasiowa-implicative logic L is algebraizable. Its equivalent algebraic se-
mantics, a class of L-algebras, is a quasivariety. Each L-algebra A is endowed with a
relation < (called preorder) by setting, Va,b € A, a < biff a = b = 1, where = is the
truth function of the connective —. If < is a total order, A is called an L-chain. L is
called a semilinear logic iff it is strongly complete w.r.t. the class of L-chains (7, 8]. Core
fuzzy logics are semilinear. They belong to a large class of systems which are axiomatic
expansions of MTL (monoidal t-norm based logic). Other well-known examples of core
fuzzy logics are BL (basic logic), G (Godel logic), L(Lukasiewicz logic), IT (product logic)
[7], SBL, NM, WNM, IMTL, and SMTL [8].
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The A connective is the one whose truth function is given by: if z = 1, A(z) = 1;
otherwise, A(z) = 0. It is used to express the notion of full truth of a proposition which
is not expressible in either MTL or other logics of left-continuous t-norms. A core fuzzy
logic L expanded by this connective is called “L with A" and denoted by La. It can pe
axiomatized by adding the following axioms to the axiomatic system for the logic L [8]:

(Al) ApVv-Ayp

(A2) A(pvy)— Apv Ay
(A3) Ap—g

(Ad) Ap — AAp

(A5) A(p— 1) — (Ap — Ay)

and the rule of A-necessitation: from  infer Agp.

Besides the notion of full truth, the ordering of truth wvalues is also internalized in La,
as A(x — y) = 1 iff # < y. Moreover, the connective A makes it possible to interpret
classical logic in L by prefixing each propositional variable by A. Extensions of all core
fuzzy logics by A are called A-core fuzzy logics, e.g., MTLa .

Definition 1 (KC, FSKC, SKC) /8] Let L be a core fuzzy logic and K a class of L-
chains. It is said that L has the (finitely) strong K-completeness, (F)SKE.C for short, if for
every (finite) set of formulae T and every formula , it holds that T Fr ¢ iff e(w) =1 for
every L-algebra A € K and each A-model e of T'. It is said that L has the K-compleieness,
K.C for short, when the equivalence is true for T = 0.

Clearly, the SKC implies the FSEC, and the FSEC implies the EKC. When K is the class
of all chains whose support is the unit interval [0, 1] with the usual ordering, the (F)SEC
can be called the (finite) strong standard completeness, (F)SSC for short.

2.2. An Axiomatization for Many Hedges

A hedge may modify truth more than another [9, 10, 11]. For example, slightly (resp.,
very) modifies truth more than rather (resp., highly) since slightly true < rather true <
true (resp., true < highly true < very true). To ease the presentation, let sp,dp denote
the identity connective, i.e., for all formula @, v = sppe = dye, and their truth functions
are the identity.

Definition 2 [5] Let L be a core fuzzy logic. A logic Li':j, where p,q are positive integers,
is an expansion of L with new unary connectives s1, ..., 8p (for truth-stressers) and dy, ..., dg
(for truth-depressers) by the following additional arioms, fori=1,....pand j=1,....q:

(5:)  sip = s

(Spi1)  spl
(D;)  djap —djp

{DGHJ' _'dqﬁ
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and the following additional deduction rule:

(DR."‘} from (¢ — @) V x infer (ho — h) vV x, for each h € {51,..., 8p,d1, ..., dg}.

Axiom (S;) (resp., axiom (D;)) expresses that s; (resp., d;) modifies truth more than s; 1
(resp., dj_q), for i =2, ...,p (resp., j =2, ..., q).

It is shown that L7 sd 152 finitary Rasiowa-implicative logic [5], and its equivalent algebraic
semantics is the class of Ljlj -algebras.

Definition 3 [5] An algebra A=(A. %, = N,0,0,1,81,....8,, dy.....dg) of type
(2,2,2,2,0,0,1,....,1) is an L’;__ -algebra if it is an L-algebra Earpanded by unary operators
si.dj: A— A thac satisfy, for all z,y,2 € A,i=1.p and j =1,q,

si(z) < si_1(x) (1)

sp(1) =1 (2)

dj(x) = dj_1(x) (3)

d,(0) =0 (4)

if (r=y)Uz=1 then (s](z) = sl (y))Uz=1 (5)
if (r=y)Uz=1 then (d}(x) = d;(y)) Uz =1 (6)

In [5], it is proved thifor all i =1, p, s: is subdiagonal (i.e., ¥z, si(x) < z), and preserves
0 and 1; for all j = 1,q, d; is superdiagonal (i.e., ¥z.d;j(z) = x), and preserves 0 and 1.
Moreover, in a chain of truth values, they are all non-decreasing.

Theorem 1 [5] Let L be a core fuzzy logic, K. a class of L-chains, and ]K” the class of the
Lpfi—chams whose $1, ..., Sp. dy, ..., dy-free reducts are in K. Then: (i) ij is a conservative
expansion of L; (ii) qu is scmngly complete w.r.t. the class of all qu—chams ie., L09
is semilinear; (iii) L has the FSSC, FSK.C, SS5C, and SKC iff L” ha,s i:he FSS5C, FSKC
S558C, and SK.C, respectively.

2.3. Mathematical Fuzzy logic with Many Dual Hedges

It can be obhserved that each hedge can have a dual one, e.g., slightly and rather can
he seen as a dual hedge of very and highly, respectively. Thus, there might be axioms
expressing dual relations of hedpes in addition to axioms expressing their comparative
truth modification strength.

Definition 4 [} Let L be a core fuzzy logic. A logic Ls Y. where n is a positive integer, is
an expansion of L with new unary connectives sy, ..., 8, (for truth-stressers) and dy, ..., dy
(for truth-depressers) by the following additional axioms, fori=1,..
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(S#)  sip = siap
{Sdil} sl

T

(DY) diyp — dip
(SD#)  dip — —simyp

and the following additional deduction rule:

(DR™) from (¢ — ¥) V x infer (hg — h) V x, for h € {81, ..., n.d1, ..., dn}.

The logic Lg’;’i is L expanded by 2n hedges, where hedges are divided into pairs of dual
ones. Axiom (51);) expresses the dual relation between hedges s; and d; and coincides with
Axiom (ST2) in Vychodil's axiomatization. For the case of very, slightly, and ¢ = young,
it means “slightly young implies not very old”. It can be proved that {SDE“‘] is equivalent
to ;0 — —di—ip which implies “very young implies not slightly old” as well.

LE”& is also a finitary Rasiowa-implicative logic, and its equivalent algebraic semantics is
the class of Lg}algebras,

Definition 5 [4] An algebra A=(A, «,=,M,10,0,1, sy, ..., $p,d1, ..., dn) of type (2,2,2,2,0,0,1,.... 1)

is an L2"-algebra if it is an L-algebra ezpanded by unary operators si,d; : A — A that
satisfy, for all z,y,z € A and i =1, ..., n,

si(x) < si_1(a) (7)
di(z) > di_(2) (®)

snf(l) =1 (9)

dy(2) < —s,(2) (10)

if (r=y)Uz =1 then (si(z) = si(y))Uuz=1 (11)
if (= y)Uz=1 then (di(z) = di(y)) Uz =1 (12)

Theorem 2 [4] Let L be a core fuzzy logic, K a class of L-chains, and ]Kf’; the class of the
Lg:’&-chams whose 81, ..., 8n,dq, ..., dy-free reducts are in K. Then: (i) Lgfi 'is a conservative
expansion of L; (ii) Lgfé is strongly complete w.r.t. the class of all LE“-chaf.ns, i€, Lgfi is
semilinear; (iii) L has the FSSC, FSK.C, S5C, and SKE.C iff Lgf; has the the FS55C, FSEC,
S55C, and SEC, respectively.

It can be seen that in a case when there is one truth-stressing (resp., truth-depressing)
hedge without a dual one, we just add the axioms expressing its relations to the exist-
ing truth-stressing (resp., truth-depressing) hedges according to their comparative truth
modification strength.
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3. FIRST-ORDER MATHEMATICAL FUZZY LOGIC WITH HEDGES

We first recall the representation of first-order formalisms for core fuzzy logics [8]. Given
a propositional core fuzzy logic L, the language PL of the first-order core fuzzy logic
L% is built from the propositional language £ of L by extending it with a non-empty
set of predicate symbols Pred, a set of function symbols Fune (disjoint with Pred), a
set of object variables Var, and two quantifiers 4 and ¥. The set of terms Term is the
minimum set containing the elements of Var and closed under the functions. The atomic
formulae are in the form of P(t!,...,t"), where P € Pred and t!, ..., t" € Term. The

set of all formmilae is obtained by closing the set of atomic formulae under combination
by propositional connectives and quantification, i.e., if v is a formula and x is a variable,
then (Vr)u and (dx)u are formulae.

In first-order core fuzzy logics, it is usual to restrict the semantics to chains only. Given an
L-chain A, an A-structure is M = (M, (Pn) pepred. (/M) feFunc), where M is a non-empty
domain; for each n-ary predicate symhol P € Pred, Py is an n-ary fuzzy relation on M,
i.e., a function M™ — A (identified with an element of A if n = 0); for each n-ary function
symbol f & Fune, fyg is a function M™ — M (identified with an element of M if n = 0).
An evaluation v of variables is a mapping v : Var — M. Let = be a variable and a € M.
Then let v[r — a] denote the evaluation such that v[r — a](z) = a and v[z — a](y) = ¥
for each variable y different from x. The values of terms and the truth values of formulae
are defined inductively as follows:

A
|=l[v, = v()

1 ey 1A A
[F(E ) e = P [ - 87 l)  for f € Fune
1 LISATE- | 1A A
IP(E - ) = Pra(lE s 7)) for P e Pred
A A A
e om) B0 = callloriees - lpali,)  forcer

(¥2)¢ling. = E{{lllNgopeala € M}
1(32) el = sup{llellng pesala € M}

if the infimum or supremum does not exist, the truth value of the quantified formula is
undefined. The A-structure M is safe if ||i,::||ﬁ.[_1, is defined for each fornmla @ and each
evaluation v. Then the truth value of ¢ in a safe A-structure M is just:

A . A -
el = mf{llwllm,,,.lv :Var — M}

For a safe A-structure M, if ||:,.:J||%I = 1, the pair (A, M) is said to be a model of g,
denoted (A, M) = p. A pair (A, M) is called a model of a theory (a set of sentences) T’
if (A,M) = foreach p e T.

The axioms for LV are obtained from those of L by substituting formulae of PL for
propositional variables and adding the following axioms for quantifiers:



Computer Science & Information Technology (CS & IT) 91

(W1) (Vz)p(z) — (i), where the term ¢ is substitutable for = in ¢
(31) w(t) = (3z)e(z), where t is substitutable for = in ¢

(W2} (¥Vz)(v» = ) = (¥ — (Vx)p), where r is not free in ¢

(32) (Va)(p ¥
(¥3) (Vo) Ve

) = ((3z)p —+ ¥), where x is not free in ¥
) =+ (v (Vz)y), where r is not free in ¢

The deduction rules of LV are modus ponens and generalization:
(Gen) From ¢ infer (Va)p

The notions of proof and provability are defined in the usual way. The formula ¢ is
provable in LY from a theory T is denoted by T Fjpy .

The syntax and semantics of first-order core fuzzy logics are bounded together by the
following completeness theorem:

Theorem 3 [12] For any first-order core fuzzy logic LV with a predicate language PL,
any PL-theory T, and any PL-formula o, the following are equivalent:

o Tty
e (A M) E ¢ for each model (A, M) of T with A being a countable L-chain.
The notions SKEC, FSEC, and EC are defined similarly to the propositional case as follows:

Definition 6 [§/ Let LV be a core first-order fuzzy logic and K a elass of L-chains. LV has
the (finite) strong K-completeness property, (F)SK.C, if for every (finite) set of formulae T
and every formula @, it holds that T Fpy ¢ iff (A, M) &= ¢ for every L-algebra A of K and
each model (A, M) of T. L has the K-completeness property, K.C, when the equivalence is
true for T = 0.

When K is the class of all chains whose support is the unit interval [0, 1] with the usual
ordering, the (F)SKEC can be called the (finite) strong standard completeness, (F)SSC.

Theorem 3 states that every first-order core fuzzy logic enjoys the SEC, where K is the
class of all countable chains.

First-order fuzzy logics with many hedges in which each hedge does not have any dual one
can be defined as follows.

Definition ¥ Given a first-order core fuzzy logic LV, let L‘;ﬁ\?’ be the expansion of LV with
new unary connectives sy, ..., s, (for truth-stressers) and dy, ...,d; (for iruth-depressers),
azioms (Si), (Sp+1), (D), (Dg+1), and the deduction rule (DR").

L9 can be obtained by expanding L] to the first-order level in the similar way as above.
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Theorem 4 The logic [3'J q‘v‘ is a conservative expansion of the logic IV, i.e., for every set
w of PL-formulne, T I—;_p ay @ iff T Frv , where PL is the language of LY.

Proof. 1t is trivial that if T ;. @ then T I—Lp ay p. Now assume that T H;v . Then, there
exists an L-chain A and a model (A, M) of T such that {A.M) = ». A can be expanded
to an LEG-chain A’ by defining sf(1) = 1 and sf(a) = 0 for every a € A\ {1} (i =1,p),
and d$(0) = 0 and d}(a) = 1 for every a € A\ {D} j=1,q). It can be easily verified that
the deﬁned functions satisfy Conditions (1)-(6). Thus, in the expanded language of PL,
(A’, M) is still safe and is a model of T, but (A", M) = ¢, ie., T Hpray o

Let A, B be two algebras of the same type with (defined) lattice operations sup, inf. It is
said that an embedding f : A — B is a g-embedding if f(sup C') = sup f[C] (whenever
sup C exists) and f(inf D) = inf f[D] (whenever inf I exists) for each countable C', D C A,
i.e., f preserves existing suprema and infima. As shown in [12], a usual way to prove SEC
is to show that every non-trivial countable L-chain can be g-embedded into some chain of
K. In this case, it is said that L has the K-o-embedding property. As proved in [12], this
is a sufficient, but in general not necessary, condition for the SE.C. This method has been
used to prove strong real completeness for first-order versions of a number of important
core fuzzy logics, e.g., MTL, SMTL, IMTL, G, NM, and WNM.

The SSC of the logic LP9Y is characterized in the following theorem.

Theorem 5 (Strong standard completeness) Let L be a core fuzzy logic, K the class
of all standard L-chains, and K*zg the class of all standard Li:g—cha-ins whose sy, ..., 85, dy, ..., dg-
free reducts are in K. Then: '

(i) If L has the K-o-embedding property, then LY'4¥ has the SKEC, i.e., SSC.
(i) If L does not have K-embedding property, then LL'3V does not have the SKE§C.

Proof. For (i), it suffices to prove that any non-trivial countable LS ‘I-chain A can be
m-embedded into some standard chain of ]K_Ei Since L has the K-o- emheddmg property,
the sy, ..., 8p. dy, ..., dg-free reduct of A can be s-embedded into a standard L-chain B =
([0,1],*x,=,Mn,U,0,1) by a mapping f preserving existing suprema and infima. Since A
is countable, for each 1 < k£ < p, we may arrange all points {{f(z), f(sp(z))}|z € A}
into a sequence {{f(z;), f(se(z:))}|z:i € A,i =1,2,...}, where D =1 < T9 < ... and
limy— oo i = 1. Since f preserves the order relation, we have 0 = f(x1) < f(x2) < ... and
limy_, o f(2z;) = 1. Let s}, : [0, 1] — [0, 1] be the piecewise linear function connecting neigh-
bored points from {{f(x;), f(sk(x:))}}, ie., s}, is continuous and s} (f(z)) = f(sk(z)), and
(1) = 1. Similarly, for each 1 <[ < g, let dj be the piecewise linear function connecting
neighbored points from {{f(x;), f(di(z;))}}, i.e., d} is continuous dj( f(x)) = f(di(x)), and

(1) = 1. We will show that all s}, and d] also satisfy Conditions (1)-(6). Since sj and
d; preserve 0, clearly, s} and d] also preserve 0. By (1), we have si(z) < sp_;(z), for all
1 < k < p (note that so(x) — 2). Thus, &, (f(:)) = f(sk(2:)) < f(sk_1(x1) = sh_ (f(:))
for all i. Since s}, s)_, are the piecewise linear functions connecting the corresponding
points, we have s (z) < s;_,(z) for all x € [0,1]. Similarly, we have dj(z) = dj_;(z)
for all x € [0,1]. It remains to show that all s; and d] are non-decreasing. For all
i > 1, since f and s; are non-decreasing, we have f(z;) < f(zis1) and s}.(f(zi)) =
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flse(x:)) < f(sk(ziv1)) = si(f(xir1)). Also, since s}, linearly connects 11eighb6red points
from {{f(z:), sp(f(z:))))i = 1,2,...}, s} is non-decreasing on [0, 1]. Similarly, dj is non-
decreasing on [0,1]. Hence, B expanded by all s} and dj is a standard Lj;ﬁ—chajn into
which A is g-emhbedded.

For (ii), since L does not have the K-embedding property, L¥ does not enjoy the SKC.
Moreover, since L9V is a conservative expansion of LV, LE9Y does not have the SK73C
either. 1 ' 1

It can be seen from the proof that if we only know L has the K-embedding property, we
cannot conclude anything, in general, about the SSC of Liﬁ‘ﬁ‘.

Theorem 5 can be generalized to arbitrary classes of L-chains and their s, ..., 55, dy, ... d-
expansions, which can be proved in an analogous way, as follows.

Corollary 1 (Strong K-completeness) Let L be a core fuzzy logic, & a elass of L-
chains, and K2 the class of the LT -chains whose sy, ..., sp.dy, ..., dg-free reducts are in

K. Then:
(i) If L has the K-o-embedding property, then LT3V has the SKE4C.
(i) If L does not have K-embedding property, then LY 3% does not have the SK§C.

Similarly, first-order fuzzy logics with many hedges in which each hedge has its own dual
one can be defined as follows.

Definition 8 Given a first-order core fuzzy logic LV, let LE:’;V be the expansion of LV with

new unary connectives si,..., sn (for truth-siressers) and dy, ...,dn (for truth-depressers),
azioms (S9), (St ), (D‘”‘ (SDM), and the deduction rule (DR).

L2 d‘?’ can be obtained by expanding L '; to the first-order level.
In an analogous way to the proofs of Lﬁ j‘v’, we can prove the following theorems.
Theorem 6 The logic Lfﬁ‘v’ is a conservative expansion of the logic IV,

Theorem 7T Let L be a core fuzzy logie, & a class of L-chains, and ]Iig":i the elass of the
Lsd-chm':ns whose 8. ..., 8y. 41, ....dy-free reducts are in K. Then:

(i) If L has the K-o-embedding property, then Lg’“ﬁ‘ has the S]K.Q” C.
(ii) If L does not have K-embedding property, then LQ 47 does not have the SK L C.

In the case that K is the class of all standard L-chains, we have the correspcrndmg results
for the SSC of L uv.

4. LOGICS WITH HEDGES BASED ON A A-CORE FUZZY LOGIC

In this section, we consider logics with many hedges based on A-core fuzzy logics, where
the projection A operator is definable.

The logic L’:‘g based on a A-core fuzzy logic L is defined as follows.
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Definition 9 Let L be a A-core fuzzy logic. A logic L’:ﬁ, where p,q are positive integers,
is an expansion of L with new unary connectives sy, ..., 8, (for truth-stressers) and dy, ..., d,
(for truth-depressers) by the following additional axioms, fori=1,...pand j=1,..,q:
(5:) 5@ — i1
(Sp+1) sl
(Dj)  dj—1p —djyp
(Dg+1) _"iqﬁ
and the following additional deduction rule:
{DRh] from (g = )V x infer (hp = b)) v x, for each h € {s1,..., 55, dy, ..., dg}.

It can be proved that Li‘q is a semilinear logic, and in fact, it is the axiomatic expansion
of L by the following additional axioms:

(S:)  sip — sicp

(Spe1) syl
(Dj)  dj1p — dsp
(Dgy1) g0

(DRR) A(p — ¥) — (hyp — hi), for each h € {1, ..., 5p, di. ..., dy}

We ean obtain the first-order logic Lj;‘g‘ﬁ‘ by expanding Lj;‘g to the first-order level in an
analogous way as in Section 3, and we can have similar completeness results.

Concerning the logic LE_’; based on a A-core fuzzv logic L, we have the following definition.

Definition 10 Let L be a A-core fuzzy logic. A logic Lg’:ﬂ, where 1 is a positive infeger, is
an expansion of L with new unary connectives sy, ..., 8p (for truth-stressers) and dy, ..., dn
(for truth-depressers) by the following additional arioms, fori=1,...n:

{th) i — 51 1%
(Sat1) sal
{th:' d;_1p — dip
(SDI*)  dip — —simy
and the following additional deduction rule:
[DRdh} ﬁ‘ﬂm {"!-':' —+ t."i'} VX iﬂfﬂ?" UW? —+ hﬂ"} Vs fﬂ':l" he {511 “*:-Sﬂﬁd'lﬁ mﬁdn}‘
Also, it can be proved that LE:’& is a semilinear logic, and in fact, it is the axiomatic
expansion of L by the following additional axioms:
{th} Biif — &1
(S721) sl
(D) di 1o — digp
(SDR)y  dip — =5
[DRf‘} Alp = ¢) = (hpy — hu), for each h € {5, ..., 5,,dq,....d }
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Also, we can obtain the first-order logic Lgfﬁ by expanding LETE to the first-order level in
a similar way as in Section 3, and we can have similar completeness results.

5. CONCLUSION

In this paper, we propose first-order fuzzy logics with many hedges hased on a first-
order core fuzzy logic for two cases: (i) each hedge does not have a dual one, and (ii)
each hedge can have its own dual one. More precisely, we expand two axiomatizations
for propositional mathematical fuzzy logic with many hedges in previous works to the
first-order level and prove a number of completeness results for the resulting logics w.r.t.
the underlying logic. In fact, we prove that the new first-order logics are a conservative
expansion of the underlving first-order core fuzzy logic and gives a characterization of their
strong completeness, especially, the strong standard completeness. We also consider logics
with many hedges based on A-core fuzzy logics, which are extensions of core fuzzy logics
by A connective. They can be obtained in an analogous way, and similar completeness
results can be proved.
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