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ABSTRACT 

 
The electric network frequency (ENF) of power lines leaves its trace in nearby media 

recordings. The ENF signals vary in a consistent way in a given power grid. Therefore, it is 

possible to develop signal processing and machine learning techniques to identify the grid of 

origin by extracting attributes of the embedded ENF signal in recorded audio. This paper 

presents a model based on a novel ENF extraction technique with training on audio and power 

recordings from different grids. The proposed approach is based on correcting erroneously 

selected peaks from the Short Time Fourier Transform (STFT) by leveraging time correlations. 

These peaks are mistakenly taken for the frequency component belonging to the embedded ENF 

signal of the power grid and are corrected by the algorithm. Results on a test set of 50 

recordings from nine different locations demonstrate the effectiveness of the proposed approach 

with an overall accuracy of 88%. 
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1. INTRODUCTION 

 
Electric network frequency (ENF) signals, which are embedded in recordings made close to 

power lines, can be used to identify the origin of these media recordings. This serves the function 

of allowing audio recordings to be validated as unaltered in legal applications. Moreover, the 

uniqueness [1] of the embedded ENF components to it’s grid of origin allow for the localisation 

of media recordings, allowing for applications in domains of authentication, security and crime 

fighting [2, 3]. 

 

State of the art methods involve examining the Fourier Transform over overlapping time frames 

of the data and combining identified frequency components, or their harmonics, to construct an 

estimate of the ENF signal variation, which is captured in the recording [4]. 

 

In this paper, a model for ENF extraction and grid of origin prediction is proposed. Particularly, 

the paper suggests a novel algorithm for improving the accuracy of the estimation of ENF values 

extracted from audio recordings. This algorithm comes as a solution to the presence of noise, 

which cannot be easily removed by using conventional noise cancellation algorithms since the 
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ENF itself is considered as noise inside an audio recording. Particularly, the paper proposes a 

solution whereby correction is done by studying the strongest frequency component, checking if 

it satisfies certain noise thresholds, and then replacing it by the next strongest frequency 

component should it fail to do so. 

 

In addition, the paper presents the design and implementation of a hardware circuit to capture 

power mains reference recordings. A simple circuit is used in tandem with an NI MyDAQ in 

order to record the reference signal. Finally, the data is analysed using our proposed algorithm 

and we show that our reference recordings belong to one of the recordings in the training set. 

The rest of this paper is organised as follows. Section II covers some work done related to our 

topic. In Section III, details of the extraction of the electric network frequency signals from audio 

recordings and power reference recordings are discussed. Section IV tackles the details of the 

extraction of features of the ENF signal and discusses the machine-learning model generated. 

Section V covers the recording of local power reference signals and presents an analysis of the 

recordings. Section V concludes the paper. 

 

2. RELATED WORK 

The ENF signal constitutes a pattern observed in audio recordings. It represents the most 

significant frequency component of the voltage on a specific power grid at each second [18]. The 

analysis of ENF signals was motivated by many forensic applications. Multiple studies were 

conducted to explore the possibility of determining either the time of recording of the audio [19] 

or the location where it was recorded through the analysis of the ENF signal embedded in it [17]. 

Many means of extracting this signal were proposed in the literature. For example in [20], the 

authors divide the audio into overlapping frames and estimate the prevailing instantaneous 

frequency in each frame. However, in this paper, the authors focused on recaptured audio 

recordings which may contain multiple ENF signals. In [21], two main challenges faced in ENF 

estimation were tackled. The authors propose a special short time Fourier transform (STFT) 

approach to solve the issues of noise and frequency resolution. The latter is chosen to be equal to 

the threshold within which the true peak value can be recovered from the noise interference. 

Another algorithm for ENF extraction was discussed in [22]. The approach relies on binary search 

to narrow the search band until an accurate estimate of the ENF information is obtained. Another 

method proposed in [23] estimates the ENF signal by tracking it across different frames. The 

number of peaks in each frame is selected to minimize the Bayesian Information Criterion (BIC) 

model. Once the ENF signal is obtained, one needs to match it to other present signals in the 

database as presented in [23, 22, and 17].  In [17], it is proven that there exists an approximate 

linear relationship between the correlation coefficient between the observed ENF and a signal in 

the database and the distances between the two recording locations. In [23], this is done through 

minimizing a squared error and equivalently maximizing the correlation coefficient between the 

estimated ENF signal and the corresponding signal from the database. In [22], a penalty 

coefficient is introduced which will use conventional methods under good conditions (weak noise 

and long recording time) but adopt a different approach in case a non-trivial noise component is 

present by relying on the fact that the noise is not dominant during all time instances. In this 

paper, we present a novel method which relies on extracting features from the ENF signal and 

applying classical machine learning techniques in order to make an accurate guess on each of the 

extracted ENF signals. 

3. ENF EXTRACTION 

3.1. Power grid operating frequency detection 

The ENF signal is defined as the sequence of the changing values over time of the instantaneous 

ENF, which is in itself the supply frequency of power distribution grids. The extraction of ENF 
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begins with a close study of the Fast Fourier Transform (FFT) of the signals. Looking at the 

signal in the frequency domain, the aim was to find the component corresponding to the trace of 

the power grid, which is expected to be around 50Hz or 60Hz, and then to estimate the exact 

instantaneous ENF of that grid. 

 

The algorithm to extract the ENF signal across time starts by identifying whether the grid ENF is 

around 50Hz or 60Hz. To achieve this, the proposed algorithm starts by taking the magnitude of 

the FFT of the recording. Since the recording is a real signal its FFT is even, and it is enough to 

study one of the two symmetric halves of the magnitude of the FFT. When studying the frequency 

components, it is noticeable that in some signals some harmonics of the 50Hz or 60Hz component 

are relatively stronger than others, whereas some are relatively very weak. Because most 

harmonics were negligible compared to the strongest one in the majority of cases, and mostly to 

keep the complexity minimal, the algorithm considers the ENF at the strongest harmonic 

 

The algorithm computes the distance between the highest frequency component F in the FFT and 

each of the first 20 harmonics of 50/60Hz (For ex: 50, 100, 150, 200Hz etc. and 60, 120, 180, 

240Hz etc.). The closest harmonic to the strongest frequency value is thus determined. Let d be 

the distance between that harmonic and F. This closest harmonic, Hnumber, is taken as the correct 

one corresponding to the power grid if d is less than a chosen frequency filter half width Fw/2 (half 

the width of a rectangular window filter chosen to be applied in the frequency domain, which will 

be discussed shortly). The width of the window is always scaled to the corresponding harmonic. 

This procedure can be expressed as follows: 

 

d < Fw/2 * Hnumber                                                                                                        (1) 

 

3.2. ENF Estimation 

After determining whether the grid ENF is around 50Hz or 60Hz, the algorithm creates the 

aforementioned bandpass filter centred at F:  

 

(F - Fw/2, F + Fw/2,) Hz                                                          (2) 

 

Once the filter is created, the algorithm computes a short-time Fourier Transform (STFT). This is 

done by first choosing a padding factor (P), time window (Tw (sec) and a per cent overlap (O) 

then moving in time along the recording. The FFT is taken across consecutive sections of the 

recording, after padding the section with zeros to increase the length in time of each section by 

the padding factor and thus have a more precise frequency domain signal after taking the FFT [5, 

6]. The sampling\frequency of all the down-sampled signals used being 1kHz, the FFT bin size is 

equal to: 

 

0.5 ���2(��∗�∗1�	
)                                                             (3) 

 

Each section will have a width equal to Tw seconds, and will be overlapping with the previous 

section over a duration of time equal to Tw * O seconds. 

 

The bandpass filter is applied in the frequency domain to the consecutive FFT signals computed 

on these time windows to get rid of as much noise as possible [7]. 

 

From the output of the filter, the strongest frequency component is determined. Using this 

frequency value as well as the one right before it and the one right after it (the two adjacent FFT 

frequency bins) the algorithm estimates the value of the strongest frequency component by 

quadratic interpolation [5, 8, 9] which makes up for the precision loss of the discrete Fourier 

transform. 
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Finally, the ENF signal is scaled back to the base harmonic by regular division in case it was 

extracted from a higher order harmonic, simply for the conservation of consistency in all 

readings. 

 

3.3. Peak Correction in noisy signals 

 
At this stage, the ENF signals extracted from power recordings are in conformity with ENF 

signals seen in the literature [10]. However, those extracted from audio signals remain highly 

noisy i.e. having many fast variations above and below the moving mean of the ENF, in 

comparison with the ENF signals extracted from power recordings taken from the same power 

grid. Simple smoothing algorithms, including median filtering [8] and outlier rejection algorithms 

do not fix the incorrect readings in addition to making the initially accurate readings deviate from 

the correct frequency values. 

 

Looking carefully at the frequency domain equivalent of time windows where readings that are 

deemed incorrect and that cause a noisy ENF were taking place, the following was observed: in 

the frequency domain, the strongest frequency component around the chosen harmonic is 

correctly identified, however, the problem is this peak is not in fact the ENF component, but 

simply a noise frequency [4]. As can be seen in the Figure 1, there is another strong local peak 

inside the bandpass filter region, which is slightly weaker than the highest peak first found. 

 

The two border labels in the figure delimit the bandpass filter frequency limits, while the two 

middle labelled points correspond to the local peaks mentioned above. 

 

 

Figure 1. Magnitude vs. Frequency in the FFT of a Time Window 

 
The global peak (PG) at frequency FG, which causes the extracted ENF to be noisy, is very close 

to the filter’s upper limit, while the next local peak (P2) located at frequency F2 is centred in the 

middle of the bandpass filter. Through the inspection of many similar cases of noisy points in 

the final ENF, the conclusion that this second largest local peak inside the bandpass filter is 

actually the ENF component was drawn. This conclusion holds in a wide majority of the noise 

cases. An algorithm was developed to identify these second strongest local peaks while 

extracting the ENF signal. Imposing a noise threshold (No) and considering the previously 

computed instantaneous ENF value Fold, if the conditions (4) and (5) hold, then the second local 

peak is taken to be the ENF component and not the global peak. 

 

P2  > No * PG                                                         (4) 
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d(F2, Fold) < distance(F1, Fold)                                          (5) 

 

 
 

Figure 2. Audio ENF Post-Processing 

 
Figure 2 shows the extracted ENF without applying the novel post-processing detection 

algorithm (left figure) and the ENF extracted with the post-processing algorithm applied (right 

figure). As can be noted, the right figure ENF has significantly less noisy points than the ENF 

extracted without the novel algorithm, and, even more importantly, points that are not originally 

noisy are not affected. There remains a fraction of the noisy point readings in the right figure for 

the following reasons: 

 

1) The algorithm is not applied very aggressively by setting the noise threshold to 

relatively high percentage values. This ensures that the algorithm does not affect 

previously correctly predicted ENF values. Thus correct estimates remain 

unaffected with high probability. 

 

2) Additionally, the algorithm only accounted here for the second strongest peak 

and corrected between that peak and the global maximum peak. However, it is 

possible to concurrently consider the third, fourth, etc. peaks in correcting the 

original one. Nevertheless, this comes at a higher computational cost. 

 

The algorithm leverages the fact that there is an inherent time correlation between consecutive 

estimated instantaneous ENF values, and thus the variability in ENF values cannot be, on 

average, too large. This is because the ENF of the grid at time tn is not independent from that at 

time tn-1, the distribution could actually be approximated by a random walk if the variations on the 

grid were assumed to be Gaussian noise. The algorithm thus takes advantage of that information 

to single out estimations that are altered by noise and estimates again a more probabilistically 

plausible value of the ENF at that time instant. 

 

Since the problem at hand does not occur in the case of power recordings, this extra 

processing is only done for audio recordings to reduce the running time. To differentiate 

whether a given recorded signal is a power recording or an audio recording, the power 

spectral density (PSD) of the signal is compared to a chosen threshold: PSD threshold. The 

power spectral density of a power recording is far larger than that of an audio recording 

because the power is highly focused at the ENF component only, unlike with audio 

recordings. Audio recordings contain many more frequency components aside from the 

ENF, the latter being simply a trace. This makes this decision accurate and highly confident. 
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Finally, all of the aforementioned parameters were chosen after thorough testing and 

studying of the processing steps as well as the literature (for first four parameters) and are 

grouped in Table 1. 

 

The frequency filter half width (Fw/2) was set to 2 Hz at the base harmonic to filter out as 

much noise as possible (the ENF signals not having a range going beyond 4 Hz), while not 

affecting the frequency components inside the bandpass filter by making it too narrow, since 

no rectangular filter in the frequency domain is ideal as its counterpart requires infinite 

length in the time domain (infinite sinc function) [11]. 

 

The time window (Tw) was initially chosen to be 5 seconds [10] but was then reduced to 

only 3 seconds through testing to achieve higher accuracies. Additionally shorter window 

times result in a better fit with the autoregressive model, which would fit a shorter signal in 

general more accurately than a lengthier one. The same was done with the per cent overlap 

(O) which, initially set to be 50%, ended up being an 85% overlap after tweaking. For the 

padding factor, the chosen value was based on the observations from the maximum-bias 

curves for “rect” windows noted in [5], in a way to reduce the final bias ratio. Lastly, the 

noise threshold (No) of the newly proposed algorithm was first chosen by inspection of 

cases similar to Figure 1, and then tweaked for best model accuracy. 
 

Table 1. Parameter Values of the Proposed Model 

 
Parameter Chosen Value 

frequency filter half width 2 Hz 

time window 3 seconds 

padding factor 16 

percent overlap 85% 

noise threshold 0.7 

 

4. ORIGIN CLASSIFICATION 

 
4.1 Selected Features 

 
After careful examination of the extracted ENF signals, a list of features were identified in order 

to differentiate between the signals coming from different grids by training a machine learning 

model on those features extracted from training data. The first feature chosen is the mean of the 

ENF signal. As explained in [10], the mean not only allows us to identify whether the signal 

belongs to a 50 Hz grid or a 60 Hz grid but also within the same type of grids the mean is never 

exactly equal to its ideal value and this shift from the ideal frequency is reasonably consistent in 

the recordings within the same grid. 

 

Other important statistical measures chosen are the variance, the median and the mode, which are 

additional descriptors of the ENF signal, noted to be rather consistent for a given grid. The range 

as well as the minimum and the maximum values of the ENF have also proven to provide a useful 

insight for the classification process by helping with the distinction between some grids. A log 

base 10 operator is applied to the range and the variance instead of directly using their initial 

values to emphasize the fact that only a significant change in these parameters is wanted to affect 

the classification model [10]. The skewness, which is defined as a measure of the degree of 

symmetry in the data, and the kurtosis, describing the sharpness of the peaks near the mean, both 

were used as features in classifying the recordings, with the kurtosis being a notably relevant 

feature characterizing ENF signals coming from different grids. 
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In addition, a wavelet transform is applied to the original ENF signal in order to extract statistical 

characteristics of the data at different resolution levels [10]. Specifically, a 9-Level wavelet 

decomposition was chosen and the log base 10 of the variance of each of the 9 resulting detailed 

levels was used as a statistical feature from every resolution level. Also the variance of the 

approximated signal is used to reflect the general variation pattern of the signal ignoring 

relatively high- frequency variations in the ENF signals. An autoregressive (AR) model, of order 

2, was then developed. 

 

y[n] = x1y[n − 1] + x2y[n − 2] + v[n]                                      (6) 

 

Three features were obtained from this new model, notably the two AR parameters as well as the 

log base 10 of the variance of the model. These features give insight on how the signal can be 

fitted into an AR model [10]. 

 

Additionally, spectrum features are also famous parameters used in audio analysis. Among these 

features, the spectral centroid, a measure of the centre of gravity of the STFT’ s magnitude [12], 

and the spectral roll-off, which represents the frequency below which a fraction (commonly 85%) 

of the total energy is present, proved to give better results in terms of the accuracy of the 

classification when integrated into the model. The mean crossing was also computed to capture 

how many times the ENF signal crosses its mean value, going over and under it, and also, the 

zero-crossings of the derivative of the ENF signal as well the maximum value of the derivative 

were added as classification features to portray how fast the ENF signal changes its direction of 

variation (increasing, decreasing) and how abrupt is its fastest change in frequency value. 

 

Finally, the outlier ratio of the ENF signal, which is a measure of instances that do not fall within 

two standard deviations of the mean value, also turned out to be a suitable criterion for the 

classification. These 28 features, mentioned earlier, constitute the training set for the classifier 

and are summarized in the Table 2. 

 

Additionally all the features which are affected by ENF signal length were normalized by 

dividing their value by the signal’s length, although all training data was finally chosen to have 

equal length of 20 minutes per sample as explained shortly. 

 
Table 2. Summary of Selected Features 

 
Index Feature 

1 Mean of ENF signal. 

2 Log10 (var) of ENF signal. 

3 Log10 (range) of ENF signal. 

4-12 Log10 (var) of the 9 detailed levels of the ENF 

signal obtained by applying a wavelet transform 

on the original signal. 

13 Log10 (var) of the approximated signal obtained 

after applying the wavelet transform (with 9 

levels) on the original ENF. 

14-15 Auto-regression parameters. 

16 Log10 (var) of the autoregressive model 

innovation signal. 
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17 Median of the ENF signal. 

18 Mode of the ENF signal. 

19 Skewness of the ENF signal. 

20 Kurtosis of the ENF signal. 

21-22 The minimum and maximum value of the ENF 

signal respectively. 

23 Mean crossing of the ENF signal. 

24-25 Spectral centroid and spectral roll-off 

respectively. 

26 Maximum derivative. 

27 Outlier ratio. 

28 Derivative zero-crossing. 

 

4.2 Classification Model 

Prior to training the classifier, the training data was split into 20-minute frames, with a 50% 

overlap across frames. This increased the total training set from 111 to 790 entries and 

contributed substantially to increasing the accuracy of the classifier. Among all the 

classifiers tested, Random Forests have proven to be the most successful. They 

outperformed SVM, AdaBoost, and many other widely used algorithms. This is due to 

the inherent randomness in selecting the data to train its weak learners on, and in selecting 

the features to provide its weak learners (decision trees) to split on [13].  

 

These characteristics, combined with splitting the training data into overlapping smaller 

components, which resulted in large quantities of data samples to train on, ensued in 

remarkable gains in accuracy. The chosen bagging tree classifier is trained over 30 cycles, 

and actually 255 such classifiers are generated. Each of the 255 classifiers is trained to 

predict whether or not a sample belongs to a chosen subset of the 9 grid classes, and for 

prediction, all of the 255 classification results are combined into a single one. There are 

255 possible subsets from the 9 grids,  255  being  2
#of  grids  -  1  

–  1  (-1  because the subset 

containing all of the 9 grids is meaningless). 

 

It is noteworthy to mention that the trained classifier does not account for a none-of-the-

above option to keep the focus exclusively on classifying samples belonging to grids the 

classifier was trained on as previous works have shown this approach to actually improve 

overall accuracy [10]. Lastly, the classification model is used to generate posterior 

probabilities corresponding to each grid class, which are used as confidence measures in 

every prediction. 

 

The proposed algorithm was tested on a test dataset with 50 recordings, comprising a 

combination of audio and power recordings coming from more than the 9 grids in the 

training set. As mentioned above, the constructed model does not account for out-of-

training- set (N) classes and thus will classify them erroneously. Tables 3 and 4 contain the 

performance results of the full model on the test dataset. Table 3 portrays the accuracy of 

the model without using the novel ENF estimation algorithm in noisy audio recordings. 
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Table 3 Result of Classification without Applying the Novel Peak-Correction Algorithm 

 
Accuracy (%) Power Audio Power and Audio 

Including N 89.2857 54.5454 74 

 

This accuracy clearly improves with the application of the peak-correction algorithm, 

through significantly improving the system’s performance on audio recordings which are 

naturally more noisy signals. Final accuracies are reported in Table 4. 

 

With the first row indicating the accuracies when the signals belonging to class N (out of 

training set class) are included and the second row indicating the accuracy only on signals 

belonging to classes the model was trained on. As can be seen, the algorithm performs 

exceptionally well in predicting the origin of signals it was trained on, with the accuracy of 

audio signals displaying a tremendous improvement using the novel peak-correction 

technique. 
Table 4. Results of Classification on Test Dataset with the Novel Algorithm 

 

Accuracy (%) Power Audio Power and Audio 

Excluding N 96.4285 100 98 

Including N 89.2857 86.3636 88 

 

5. DATA ACQUISITION AND ANALYSIS 

 
To obtain reference power recordings, a simple circuit, shown in the diagram below, was 

devised based on the one used in [14]. The focus in this circuit is on its simplicity and its 

portable design as well as on the accessibility of its components, which consist of a 

transformer, operational amplifier, capacitor, and resistors. The circuit is easily portable and 

can be directly plugged into different wall outlets in any location, which makes collecting 

recordings at different locations within the grid a quite simple task. 

 

The step down transformer is used to bring down the 220VAC signal from the power outlet 

to a 25V peak-to- peak signal. The signal is then passed through a low pass filter, which 

consists of a simple RC circuit with the output signal taken across the capacitor. The RC 

circuit serves as a low-pass filter and performs anti-aliasing to allow for proper acquisition. 

In order to remove the loading effect and further bring down the voltage to readable values, a 

unity gain amplifier with a voltage divider at the buffer output is utilised, resulting in a final 

2V peak-to-peak signal biased at 0V [15]. The resulting output signal is read by a NI 

MyDAQ hardware and fed into LabVIEW where it is recorded at a sampling rate of 1000 

samples/sec and number of samples equal to 1000. The resulting signal is then exported as a 

.wav file to the machine running LabVIEW. 

 

       
 

Figure 3 Schematic of the Chosen Circuit Design. 
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Over the duration of our work, we collected nigh onto 14 hours, in one-hour samples, of clean 

power recordings from the power grid in Lebanon. Much care was taken to filter out recordings 

where mains power was cut due to country-wide regular power outages and instead back-up 

generators were used to supply electricity. Next, the ENF component of the signals is extracted, 

and a sample is shown in Figure 5. 

 
Figure 4 LabVIEW Data Acquisition VI. 

 

Across all the acquisitions, it can be noted that on average the ENF was centred around 50.6Hz to 

50.8Hz. Additionally, a common trend observed across recordings are occasional plunges of 

magnitude around 1Hz to 1.5Hz in the ENF, with drops from ~50.7Hz down to 49.3Hz to be the 

trend. A sample ENF is shown in Figure 5, highlighting one of the plunges. 

 
Figure 5 ENF of Signal Recorded using MyDAQ. 

 

6. CONCLUSIONS 

 
In this paper, we document our work for building a model for the extraction of ENF from media 

signals and for the classification of the origin of media recordings and power mains reference 

signal recording. Additionally, we propose a novel technique for ENF extraction that 

considerably improves the accuracy of the extraction in the presence of noise, as indicated by the 

difference in accuracies obtained with and without the ENF extraction method and as portrayed in 

the discussions. This method leverage the existence of correlation across time between ENF 

values, and thus estimates instantaneous ENF values with aim a reduction in overall variability 

frequency, thus having a similar yet much more accurate effect than smoothing. Moreover, we 

present the multi-class machine learning algorithm utilized to classify each grid as well as the 

features that were employed in the classification model. Lastly, for the purpose of ensuring 

reproducibility the hardware system developed is also portrayed in the paper. 
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