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ABSTRACT 
 
Clustering samples according to an effective metric and/or vector space representation is a 

challenging unsupervised learning task with a wide spectrum of applications. Among several 

clustering algorithms, k-means and its kernelized version have still a wide audience because of 

their conceptual simplicity and efficacy. However, the systematic application of the kernelized 

version of k-means is hampered by its inherent square scaling in memory with the number of 

samples. In this contribution, we devise an approximate strategy to minimize the kernel k-means 

cost function in which the trade-off between accuracy and velocity is automatically ruled by the 

available system memory. Moreover, we define an ad-hoc parallelization scheme well suited for 

hybridcpu-gpustate-of-the-art parallel architectures. We proved the effectiveness both of the 

approximation scheme and of the parallelization method on standard UCI datasets and on 

molecular dynamics (MD) data in the realm of computational chemistry. In this applicative 

domain, clustering can play a key role for both quantitively estimating kinetics rates via Markov 

State Models or to give qualitatively a human compatible summarization of the underlying 

chemical phenomenon under study. For these reasons, we selected it as a valuable real-world 

application scenario. 
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1. INTRODUCTION 

 
Grouping unlabelled data samples into meaningful groups is a challenging unsupervised Machine 

Learning (ML) problem with a wide spectrum of applications, ranging from image segmentation 

in computer vision to data modelling in computational chemistry [1]. Since 1957, when k-means 

was originally introduced, a plethora of different clustering algorithms arose without a clear all-

around winner. 

Among all the possibilities, k-means as originally proposed, is still widely adopted mainly 

because of its simplicity and the straightforward interpretation of its results. The applicability of 

such simple, yet powerful, algorithm however is limited by the fact that, by construction, it is able 

to correctly identify only linearly separable clusters and it does require an explicit feature space 

(i.e. a vector space where each sample has explicit coordinates). 

To overcome both these limitations one can take advantage of the well-known kernel extension of 

k-means [2]. Computational complexity and memory occupancy are the major drawbacks of 
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kernel k-means: the size of the kernel matrix to be stored together with the number of kernel 

function evaluations scales quadratically with the number of samples. This computational burden 

has historically limited the success of kernel k-means as an effective clustering technique. In fact, 

even though the potential of such approach has been theoretically demonstrated, few works in the 

literature [3] explore possibly more efficient approaches able to overcome the 

�(��)computational cost. 

We selected a real-world challenging application scenario, namely Molecular Dynamics (MD) 

simulations of biomolecules in the field of computational chemistry. Such atomistic simulations, 

obtained by numerical integration of the equations of motion, are a valuable tool in the study of 

biomolecular processes of paramount importance such as drug-target interaction [4]. MD 

simulations produce an enormous amount of data in the form of conformational frames (i.e. atoms 

positions at a given time step) that need to be processed and converted into humanly readable 

models to get mechanistic insights. Clustering can play a crucial role in this, as demonstrated by 

the success of recent works [1] and by the popularity of Markov state models [5]. We stress the 

fact that kernel k-means, without requiring an explicit feature space, is particularly suited for 

clustering MD conformational frames where roto-translational invariance is mandatory. 

We introduce here an approximated kernel k-means algorithm together with an ad-hoc 

distribution strategy particularly suited for massively parallel hybrid CPU/GPU architectures. We 

reduce the number of kernel evaluations both via a mini-batch approach and an a priori sparse 

representation for the cluster centroids. As it will be clear, such twofold approximation is 

controlled via two straightforward parameters: the number of mini-batches � and the sparsity 

degree of the centroid representation �. These two knobs allow to finely adapt the algorithm to the 

available computational resources to cope with virtually any sample size. 

The rest of the paper is organized as follow: in section 2, we briefly review the standard kernel k-

means [2] [6] algorithm. In section 3 our approximate approach is introduced together with a 

detailed description of the proposed distribution and acceleration strategy. Section 4 contains the 

assessment of both the approximation degree and the performances on standard ML datasets and 

a real case MD scenario. A discussion section together with conclusions complete the work. 

2. KERNEL K-MEANS 

Given a set � of data samples	
 ∈ ℝ
 , � ∈ [1, �], a non-linear transformation �(	
): ℝ
 → ℝ
�
 

and said �the number of clusters to be found, the kernel k-means algorithms finds a set �of 

centroids �� ∈ ℝ
�, � ∈ [1, �] in the transformed space, minimizing the following cost function: 

 �(�) = ∑ 	!
"# ∑ 	$�"# ∥ �(	
) − �� ∥� '((
 , �) (1) 

Where (
 is the index of the closest prototype (i.e. the predicted label for sample �-th) obtained 

as: 

 (
 = )*+,�-� ∥ �(	
) − �� ∥� (2) 

and '((
 , �) is the usual Kronecker delta. 

A Gradient Descent (GD) procedure can be used in order to locally minimize the non-convex cost 

Ω(�)starting from an initial set of cluster prototypes �/ = {��,/} so that at the 2-th iteration we 

have: 

 ��,3 = #
|56,7| ∑ 	!
"# �(	
)'((
,3 , �) (3) 
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where the �-th cluster cardinality is indicated as |��| = ∑ 	!
"# '((
 , �). 

A self-consistent update equation can be derived substituting Eq.3 into Eq.1: 

 
(
,38# = argmin� { #

|56,7|? ∑ 	@,A B@,A'((@,3 , �)'((A,3 , �) − �
|56,7| ∑ 	@ B
,@'((@,3 , �)}

= argmin� +�,3 − 2D(
,�),3
 (4) 

Where the inner product in the transformed space < �(	@), �(	A) > was replaced with a generic 

Mercer kernel B(	@, 	A) = B@,A and where we introduced the cluster compactness and cluster 

average similarity respectively defined as: 

 +� = #
|56|? ∑ 	@,A B@,A'((@, �)'((A, �) (5) 

 D
,� = #
|56| ∑ 	@ B
,@'((@, �) (6) 

It is therefore clear that the knowledge of the kernel matrix is sufficient to update the set of 

predicted labels up to convergence. Since an explicit form for �(	)is not known in general, a 

medoid approximation can then be used in order to obtain an approximated estimate of the cluster 

prototypes: 

 

�G#(��) ≈ ,� = argminIJ∈K ∥ �(	L) − �� ∥�

= argminIJ∈KBL,L − 2 #
|56| ∑ 	
 B
,L'((
 , �)

= argminIJ∈KBL,L − 2D
,�
 (7) 

As shown in [7], for the linear case, the kind of iterative algorithm described by Eq.4 almost 

surely converge to a local minimum, eventually reaching the stopping condition (
,38# =
(
,3 ,				∀� ∈ [1, �]. 
We conclude this section with a final remark on the cluster compactness and the cluster average 

similarity (i.e. Eq.5-6). Indeed a kernel k-means reformulation in term of such quantities was 

originally proposed by Zhang and Rudnicky[6] in order to reduce the memory footprint of the 

kernel matrix allowing caching on disk. As we are going to show in the next section, the same 

formalism can be effectively used to design an efficient distribution strategy. 

3. DISTRIBUTED MINI-BATCH KERNEL K-MEANS 

We present in this section our contribution: a novel approximation for the kernel k-means 

algorithm together with an ad-hoc distribution and acceleration strategy well suited for nowadays 

heterogenous High Performance Computing (HPC) facilities. 

Remark about the notation used: in the following a superscript eventually identifies a specific 

mini-batch quantity, when no superscript is used the quantity has to be intended as a global 

quantity. As an example��
 represents the �-th cluster prototype for the �-th mini-batch whereas 

�� is the �-th global cluster prototype obtained combining the partial results of every mini-

batches. 
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3.1. The Mini-batch Kernel K

Our primary approach to reduce the 

consists of splitting the dataset in disjoint mini

procedure can be summarized by these steps

1. Fetch one mini-batch at a time

2. Perform kernel k-means clustering on

initialization technique. 

3. Merge together current minibatch results to global results with a proper strategy and go 

to step 1. 

Fig.1 (a) shows a pictorial description of such algorithm highlighting its 

The entire procedure is detailed in the subsequent paragraphs.

Fig.1 (a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to 

divide the dataset into mini-batches.

approximation proposed on the number of kernel matrix elements that need to be evaluated.

Mini-batch fetching: The first sensible choice to be made, regards the way in which the dataset is 

divided in � disjoint mini-batches of size 

consider in the following �
 = !
N

two common reasonable sampling strategies.

A stride sampling strategy can be used when the entire dataset is known beforehand and one 

wants to minimize the correlations among samples within the same mini

{	
8�N}, � ∈ [0, !
N − 1]. 

A block sampling strategy can be used instead to pro

clustering procedure as soon as the first 

For the sake of clarity the two different sampling strategies presented are visualized in Fig.
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batch Kernel K-Means 

Our primary approach to reduce the �(��) complexity coming from the kernel matrix

splitting the dataset in disjoint mini-batches that are processed one after the other. The 

can be summarized by these steps:  

batch at a time until all data is consumed. 

means clustering on one minibatch and collect results with a proper 

 

current minibatch results to global results with a proper strategy and go 

(a) shows a pictorial description of such algorithm highlighting its hierarchical structure. 

in the subsequent paragraphs. 

(a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to 

batches. (c) From left to right we visualize the effect of the 

approximation proposed on the number of kernel matrix elements that need to be evaluated. 

The first sensible choice to be made, regards the way in which the dataset is 

batches of size �
, ∀� ∈ [0, � − 1]. Without loss of generality we will 
!
N ∀� ∈ [0, � − 1]. A variety of possibilities arise, we present here 

two common reasonable sampling strategies. 

A stride sampling strategy can be used when the entire dataset is known beforehand and one 

wants to minimize the correlations among samples within the same mini-batch i.e. 

A block sampling strategy can be used instead to process a data stream in order to start the 

clustering procedure as soon as the first �/ samples are received i.e. �
 = {	
P
Q8�}, �

For the sake of clarity the two different sampling strategies presented are visualized in Fig.

complexity coming from the kernel matrix evaluation 

batches that are processed one after the other. The 

one minibatch and collect results with a proper 

current minibatch results to global results with a proper strategy and go 

hierarchical structure. 

 

(a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to 

(c) From left to right we visualize the effect of the two fold 

The first sensible choice to be made, regards the way in which the dataset is 

. Without loss of generality we will 

. A variety of possibilities arise, we present here 

A stride sampling strategy can be used when the entire dataset is known beforehand and one 

batch i.e. �
 =

cess a data stream in order to start the 

∈ [0, !
N − 1]. 

For the sake of clarity the two different sampling strategies presented are visualized in Fig.1(b). 
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Kernel evaluation and mini-batch initialization: Once a mini-batch is fetched, it is 

straightforward to evaluate the mini-batch kernel matrix B
 with a computational cost of �(!?
N?). 

Let us now discuss how it is possible to initialize the �-th mini-batch labels. We distinguish two 

cases: 

� = 0: during the first mini-batch the global cluster medoids have to be selected randomly 

or by means of some rational. We propose here to use a kernelized version of the popular 

k-means++ initialization scheme, where the medoids are picked at random with a 

distribution that maximize the distance among them. The interested reader can read the 

work in[8] where such initialization scheme is discussed in detail for the linear case. 

� ≠ 0: Starting from the second mini-batch the global cluster medoids S = {,� ≈
�G#(��)} obtained at the end of the previous iterations are used for the initialization. 

Simply applying Eq.2 we have: 

 (L
 = argmin� [B(	L
, 	L
) − 2B(	L
 , 	T�)] (8) 

Such initialization step automatically allows to keep track of the clusters across different 

mini-batches. Indeed the global �-th medoid obtained at the end of the (� − 1)-th iteration 

is used as initialization for the same �-th cluster of the �-th mini-batch. This avoids 

ambiguity also when the partial mini-batch result has to be merged with the global one. 

The mini-batch medoid ,�
 will be combined with the global centroid ,� having the same 

index �. 

It should be understood that in order to evaluate the second term of Eq.8 one has to 

perform additional computations. One has to compute the kernel function for all the pairs 

(	L
, ,�) where 	L
 belongs to the �-th mini-batch and ,� its a global medoid coming from 

the (� − 1)-th mini-batch. Thus, the initialization phase of each mini-batch requires the 

evaluation of the corresponding auxiliary kernel matrix BU
 of size 
!
N × �. 

Mini-batch inner GD loop: Given a mini-batch kernel matrix B
 and an initial set of labels W/
 , 

equations Eq.2-5 are used to perform a GD optimization of the reduced cost function: 

 Ω(�
) = ∑ 	I6∈KX ∑ 	$L"# ∥ �(	�) − �L
 ∥� '((�
 , Y) (9) 

A final set of labels W
 is obtained as a result of such optimization procedure. It is worth stressing 

the fact that at this point the set of mini-batch cluster prototypes is not knownin terms of explicit 

coordinates, but just in term of membership. As a solution, we propose the medoid approximation 

introduced in section 2. Using equation Eq.7, we set the cluster prototypes as: 

 ��
 ← �(,�
):				,�
 = arg minIJ∈KX ∥ �(	L) − ��
 ∥� (10) 

More sophisticated approaches based, for instance, on a sparse representation of cluster centres 

are possible (e.g. see [9]). However, the inherent additional computational cost and the 

satisfactory results already obtained by means of the simple medoid approximation discouraged 

us to further investigate this possibility. 

Full batch cluster centres update: We discuss now on how to merge the medoids S
 of the �-th 

mini-batch together with the global medoid set S.Let {�� = �(,�} be the global medoids at the 
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(� − 1)-th iteration of the outer loop and let {��
 = �(,�
)} be the cluster centres for the current �-
thmini-batch. We propose to obtain the resulting global cluster prototypes as a convex 

combination of the two: 

 �� ← (1 − [)�(,�) + [�(,�
) (11) 

Practically, since Eq.11 cannot be evaluated directly, we introduce a second medoid 

approximation as already done in the previous paragraph, so that: 

 �� ← �(,�):				,� ← arg minIJ∈KX ∥ �(	L) − (1 − [)�(,�) − [�(,�
) ∥� (12) 

The choice of this convex combination stems from a simple but important observation; in order to 

choose the coefficient [ let us consider the updating equation for the global cluster center �� at 

the second iteration of the algorithm, when the first two mini-batches are merged in a single one 

(assuming this is the complete dataset): 

 

�� = #
|56]|8|56̂ | ∑ 	IX∈K]∪K^ �(	
)'((
 , �)

= |56]|
|56]|8|56̂ |

#
|56]| ∑ 	IX∈K] �(	
)'((
 , �) + |56̂ |

|56]|8|56̂ |
#

|56̂ | ∑ 	IX∈K^ �(	
)'((
 , �)
= |56]|

|56]|8|56̂ | ��/ + (1 − |56]|
|56]|8|56̂ |)��#

 (13) 

We therefore set [ = |56X|
|56X|8|56| so that, if each mini-batch is labelled correctly at the end of the GD 

minimization, we retrieve the correct result (i.e. same cluster medoids as for full batch kernel k-

means). 

Empty clusters: We close this subsection with a remark about empty-clusters. It is not guaranteed 

that along inner loop iterations there will be at least one data sample per cluster. This is a well-

known k-means issue and several strategies to deal with such empty-clusters problem are possible 

e.g. randomly pick a new cluster prototype or reducing �. Here we propose the following: if a 

given cluster � is found to be empty at the end of the �-th mini-batch iteration then its global 

prototype will not be updated. It is worth noting that this kind of strategy is naturally embedded in 

the definition of [ since for |��
| = 0 we have [ = 0 and Eq.11 guarantee the correct behaviour. 

3.2. Approximate Mini-batch Kernel K-Means 

In the previous paragraph we introduced a simple yet powerful mini-batch approximation which 

allowed us to reduce the number of kernel evaluations down to � !
N. Here, we show how we can 

further reduce the complexity of the algorithm by means of an a priori sparse representation of the 

cluster centroids. This approach was first introduced by Chitta et al. and relies on the simple 

observation that the full kernel matrix is required at each iteration of the kernel k-means 

algorithm because the clusterscentres are represented as a linear combination of the entire dataset. 

However, the number of kernel elements to be evaluated can be drastically reduced if one restricts 

the cluster centres to a smaller sub space spanned by a small number of landmarks i.e. data 

samples randomly extracted from the dataset. A complete review of such approximation 

technique is out of the scope of this work, the interested reader can refer to [3] for further details. 



Computer Science & Information Technology (CS & IT)                                 189 

 

We limit ourselves to illustrate here how we can reformulate the same idea within our algorithm. 

In order to do so we simply need to restrict the summation in Eq.3 on the subset �: 	
 ∈ `where 

` = {Y/, . . . , Y|b|} is a set of landmarks uniformly sampled from the mini-batch. 

 �� = #
c56c ∑ 	
∈b �(	
)'((
 , �), � ∈ [1, �] (14) 

The self-consistent update equation for the minibatch labels will be: 

 (
38# = argmin� [+d(��3) − 2De(	
 , ��3)] (15) 

where +d(��) and De(	
, ��) are the approximate mini-batch clusters compactness and mini-batch 

clusters similarity  

 +d(��) = #
|567|? ∑ 	@,A∈b B@,A'((@3 , ��3)'((A3 , ��3) (16) 

 De(	
, ��) = #
|567| ∑ 	@∈b B
,@'((@3 , ��3) (17) 

It should be clear from Eq.16 and Eq.17 that the number of kernel evaluations needed to run such 

approximated algorithm is now �|`| = �� !
N, where the key parameter � is the fraction of data 

used for the cluster centres representation in each mini-batch defined as: 

 � = |b|
f � (18) 

In Fig.1(c) the reader can visualize the effects that �and � have on the number of kernel elements 

that needed to be evaluated in order to iterate the proposed algorithm. As already stated in the 

introduction, these two parameters act like knobs that control the degree of approximation of the 

procedure with respect to standard kernel k-means. Later, we will discuss on how to pick proper 

values for these parameters according to the available computational resources. 

3.3. Heterogeneous HPC implementation strategy 

We discuss here how the nature of the previously introduced algorithm is particularly suited to be 

implemented on both distributed systems and heterogeneous architectures where an accelerator 

(e.g. general-purpose GPU) is paired to a CPU. 

As already discussed in section 2, the whole iterative procedure to update the set of predicted 

labels minimizing the kernel k-means cost function can be expressed in terms of the average 

cluster similarity gh, i, ∀h ∈ j, . . . , k
l , i ∈ j, . . . , m − n and the cluster compactness oi∀i ∈

j, . . . , m − n. Both quantities can be expressed as partial summations of kernel matrix elements, 

where the elements to be summed are selected according to the labels via p(qh, i). From Eq.6 it 

should be clear that the summation to compute the h-th row of g runs just over the h-th row of r, 

this naturally suggest us a row wise distribution strategy. Considering a system with s nodes, the 

workload is divided so that each node t accounts for the computation of rh,i and gh,u∀i ∈
[j, k

l), h ∈ [t k
ls , (t + n) k

ls), u ∈ [j, m). 

The full data distribution scheme is presented in Fig.2(a) and the resulting algorithm is detailed 

via pseudo code in Alg.1. The advantage of such approach mainly consists in the reduced 

communication overhead. Indeed, for each iteration of the inner loop two communication steps 

are sufficient, involving a reduction of the cluster compactness o together with a gathering step 
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for the updated labels	v. The kernel matrix elements always reside locally to the node and the

never go through the network. 

The memory footprint can be easily computed and amounts to 

is the size of variables expressed in Bytes, this is a central quantity because in a real application 

scenario once fixed the computational resources i.e. amount of memory available per processor 

and the number of processors s
that can be used in order to process the entire dataset:

 

An upper bound for the message size per node can also be easily given by 

however represents a worst-case

each step, instead of communicating just the ones that were actually updated.

The computational complexity of the proposed implementation grows as 

dominated by the kernel matrix evaluation step. 

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of 

pursuing our row-wise data distribution scheme and additionally it would have hin

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix 

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited 

memory addressing capabilities of accelerators such as gen

memory footprint is largely compensated by the approximation strategy in performance terms.

Fig. 2(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each 

node holds a set of entire rows for BU
the main steps of an inner loop iteratio

together with a partial + starting from its 

reduction step. In the third stage each node uses that information togeth

its slice of W. As a final step an all-to
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. The kernel matrix elements always reside locally to the node and the

The memory footprint can be easily computed and amounts to w( k
ls (k

l + m) + k
l +

sed in Bytes, this is a central quantity because in a real application 

scenario once fixed the computational resources i.e. amount of memory available per processor 

s, it allows us to compute the minimum number of mini

that can be used in order to process the entire dataset: 

�@
A =
?P
x

G(y
x8#)8z(y

x8#)?G{y
x8|

}
 

An upper bound for the message size per node can also be easily given by w( k
ls

case scenario, where the entire set of labels v are communicated at 

each step, instead of communicating just the ones that were actually updated. 

The computational complexity of the proposed implementation grows as ~( k
l�

rnel matrix evaluation step. It is worth stressing the fact that we decided not 

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of 

wise data distribution scheme and additionally it would have hin

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix 

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited 

memory addressing capabilities of accelerators such as general purpose GPUs; this increased 

memory footprint is largely compensated by the approximation strategy in performance terms.

(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each 

BU, B, D and W. Each node holds a local copy of +. (b) From left to right 

the main steps of an inner loop iteration are illustrated. At first, each node is computing its portion of 

starting from its B rows and W. Then, the global + is retrieved with an all

reduction step. In the third stage each node uses that information together with its portion of 

to-all gathering step spread the updated labels across the network.

. The kernel matrix elements always reside locally to the node and they 

�m) where w 

sed in Bytes, this is a central quantity because in a real application 

scenario once fixed the computational resources i.e. amount of memory available per processor � 

, it allows us to compute the minimum number of mini-batches 

(19) 

ls + �m). This 

are communicated at 

k�
�s) and it is 

It is worth stressing the fact that we decided not 

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of 

wise data distribution scheme and additionally it would have hindered the 

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix 

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited 

eral purpose GPUs; this increased 

memory footprint is largely compensated by the approximation strategy in performance terms. 

 
(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each 

. (b) From left to right 

n are illustrated. At first, each node is computing its portion of D 

is retrieved with an all-to-all 

er with its portion of D to compute 

all gathering step spread the updated labels across the network. 
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Alg. 1Distributed mini-batch kernel k-means pseudocode for node �. 

Starting from this observation we discuss now how the mini-batch structure of the algorithm can 

be exploited in order to design an effective acceleration strategy. In the following we will 

consider an offload acceleration model where host processor and target device have separate 

memory address spaces and communicate via a bus with limited bandwidth (e.g. PCIe) with 

respect to the processor-memory standard bus.  

The evaluation of a large kernel matrix perfectly fits the massively parallel architecture of 

nowadays accelerators therefore it seems a reasonable choice to offload that portion of the 

computation. One of the key element for an efficient acceleration scheme however is the 

overlapping between the host and the target workload [10], so that a simple strategy where the 

CPU and the accelerator are alternatively in idle waiting for each other is not desirable. 

Each iteration �-th of the outer loop depends on the previous one, namely the (� − 1)-th, in order 

to initialize the set of labels W
. This is what prevents the algorithm to be trivially parallel forcing 

to run just one mini-batch per time. However, if one considers the first two steps of each outer 

loop iteration i.e. mini-batch fetch �
 and kernel matrix evaluation B
it is clear that they can be 

performed independently for each �. We exploit this feature, instructing the target device to 

compute the kernel matrix B(
8#)while the host processor executes the inner loop of the algorithm 

on the �-th mini-batch. 

The offload procedure is detailed in Fig.3; the overall performance gain heavily depends on the 

accelerator side implementation of the kernel matrix evaluation which goes outside the scope of 

the proposed paper. 

input:  dataset �; number of clusters �; number of mini-batches � 

output:  medoidsS 

 

1 for�← 1 to�do 

2  �
 ← samples fetched from �	\X��
 
3  B
(�) ← precompute kernel matrix 

4  if� == 0 

5   S/← initialize according to kernel k-means++  

6  end 

7  W
(�)← assigned according nearest neighbor medoid 

8  2← 0 

9  while W3
 != W38#
  

10   allgatherW3
      sync 

11   +
(�)← compute according to Eq.5 

12   D
(�)← compute according to Eq.6 

13   allreduce sum+
     sync 

14   W38#
 (�)← assign accoding to Eq.4 

15   2 ←	2 + 1 

16  end 

17  S
(�) ← medoid approximation according to Eq.10 

18  allreduce min S
       sync 

19  S(�) ← (1 − [)S + [S
(�) 

20  allreduce min S      sync 

21 end 
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Fig. 3 (a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a 

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads 

can be used to overlap host and device wor

data fetching from disk, for host-device data transfer and for device control. It instructs the device to 

compute the kernel matrix elements needed by the next 

available threads cooperate and are responsible for the current 

elements provided by the accelerator. In this sense device and host work in a producer

(b) We detailed how a 3-stage pipeline can be used on the device in order to overlap the kernel 

with the host to device (H2D) and device to host (D2H)

on the device and the kernel matrix back to host.

4. EXPERIMENTS 

We implemented the proposed method and we p

the ML field as well as against a 2D toy dataset in order to better asses both performances and the 

degree of approximation. Moreover, we present an applicati

Chemistry realm.  

2D Toy: Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each 

cluster is generated by sampling a Gaussian distribution with center and width carefully selected 

in order to facilitate its visualization i.e. (

and (σ=[0.2,0,2],µ=[0.25,0.75]) .

MNIST: dataset of handwritten digits

a test set of 30000 samples. 784-

RCV1: Reuters Corpus Volume I is a collection of manually label

benchmark for classification in the domain of multilingual text categorization 

of 23149 training samples and 781265 test samples. Among the various formats available we used 

here its expression as normalized log TF

frequency) vectors in a sparse 47236

pre-processed the dataset removing samples with multiple labels and categories with less than 500 

samples. After doing this we obtained a dataset of 193844 samples all coming from the test 

samples which we arbitrarily divided in 188000 

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed 

a dimensionality reduction step via random projection on a dense 256
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(a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a 

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads 

can be used to overlap host and device workload. A CPU thread is bound to the device, it is responsible for 

device data transfer and for device control. It instructs the device to 

compute the kernel matrix elements needed by the next (� + 1)-th iteration of the outer loop. All the other 

available threads cooperate and are responsible for the current �-th iteration consuming the kernel matrix 

elements provided by the accelerator. In this sense device and host work in a producer-consumer pattern. 

stage pipeline can be used on the device in order to overlap the kernel 

(H2D) and device to host (D2H) slow communications needed to transfer the dataset 

on the device and the kernel matrix back to host. 

We implemented the proposed method and we present here some tests against standard dataset

the ML field as well as against a 2D toy dataset in order to better asses both performances and the 

degree of approximation. Moreover, we present an applicative scenario in the Computational 

Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each 

cluster is generated by sampling a Gaussian distribution with center and width carefully selected 

acilitate its visualization i.e. (σ=[0.2,0,2],µ=[0.25,0.75]), (σ=[0.2,0,2],µ=[0.75,0.75]) 

=[0.25,0.75]) . 

dataset of handwritten digits[11]. It is composed by a training set of 60000 samples and 

-dimensional feature space with integer features. 

Reuters Corpus Volume I is a collection of manually labelled documents used as standard 

benchmark for classification in the domain of multilingual text categorization [12]. It is com

and 781265 test samples. Among the various formats available we used 

here its expression as normalized log TF-IDF (i.e. logarithmic term frequency-inverse document 

frequency) vectors in a sparse 47236-dimensional feature space. As already proposed in 

processed the dataset removing samples with multiple labels and categories with less than 500 

samples. After doing this we obtained a dataset of 193844 samples all coming from the test 

samples which we arbitrarily divided in 188000 training samples and 5844 test samples to 

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed 

a dimensionality reduction step via random projection on a dense 256-dimensional space.

 
(a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a 

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads 

kload. A CPU thread is bound to the device, it is responsible for 

device data transfer and for device control. It instructs the device to 

er loop. All the other 

th iteration consuming the kernel matrix 

consumer pattern. 

stage pipeline can be used on the device in order to overlap the kernel computation 

slow communications needed to transfer the dataset 

standard datasets in 

the ML field as well as against a 2D toy dataset in order to better asses both performances and the 

ve scenario in the Computational 

Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each 

cluster is generated by sampling a Gaussian distribution with center and width carefully selected 

=[0.2,0,2],µ=[0.75,0.75]) 

. It is composed by a training set of 60000 samples and 

ed documents used as standard 

. It is composed 

and 781265 test samples. Among the various formats available we used 

inverse document 

proposed in [13] we 

processed the dataset removing samples with multiple labels and categories with less than 500 

samples. After doing this we obtained a dataset of 193844 samples all coming from the test 

training samples and 5844 test samples to 

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed 

dimensional space. 
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Noisy MNIST: generated by starting from MNIST and adding uniform noise on 20% of the 

features. Each sample in the training set is perturbed 20 times in order to obtain a final dataset of 

1200000 samples in a 784-dimensional normalized feature space. 

MD trajectory: As previously anticipated, we used Molecular Dynamics as an appealing 

clustering scenario in which to leverage the features ofthe proposed algorithm. Microsecond-long 

trajectories of the binding mechanism of a drug, specifically a transition state analogue named 

DADMe-immucillin-H, to the Purine Nucleoside Phosphorylase (PNP) enzyme were employed 

[14]. Those long trajectories well represent a good and relatively novel application domain for 

clustering and machine learning in general. 

When possible, we compared the clustering labels coming from the proposed procedure with the 

training labels. We will consider mainly two standard quality measures: 

Clustering accuracy: Let (
 be the set of labels obtained as a clustering result and let �
 be the set 

of the actual classes given as training or test. The clustering accuracy is defined as �(�, () =
∑ 	!G#
"/

�(�(�X),�X)
! . Where �((
)is a mapping function which maps each clustering label to an 

actual training or test class.We propose here the use of a simple majority voting scheme to obtain 

such a mapping.  

Normalized Mutual Information:Let now be -
 = ∑ 	!G#�"/ '((
 , �) , ,
 = ∑ 	!G#�"/ '(�
 , �) and 

�
,� = ∑ 	!G#�"/ '((� , �)'(�� , �) the normalized mutual information is a quality measure defined 

as�S�(�, () = ∑ 	X,6 �X,6���(P�X,6
�X�6)

(∑ 	X AX���(�XP ))(∑ 	X @X���(�XP )) 

We tested our implementation on a variety of different platforms in order to better describe the 

versatility and the potential impact of the proposed algorithm: 

IBM-BG/Q - Cineca/FERMI: Cluster of 10240 computing nodes equipped with two octacore 

IBM PowerA2, 1.6 GHz processors each, for a total of 163840 cores. The available memory 

amounts to 16 GB / core and the internal network features a 5D toroidal topology. 

IBM NeXtScale - Cineca/GALILEO: Cluster of 516 computing nodes equipped with two 

octacore Intel Haswell 2.40 GHz processors for a total of 8256 cores. The available memory 

amounts to 8 GB / core and the internal network features Infiniband with 4x QDR switches. 

State-of-the-art Workstation:Modern desktop machine equipped with two Intel E-6500 esacore 

processors and 64 GByte of memory. 

4.1. Explanatory 2D toy model 

As a first step to assess the proposed clustering algorithm we consider the 2D Toy dataset. We 

aim at better illustrating and helping the visualization of the evolution of the cluster centres along 

with the iterations of the outer loop. Incidentally, we want to highlight the consequences of a poor 

sampling strategy (concept-drift) and to give a rationale for understanding its quality. 

In figure 4(a)-(b) the evolution of the cluster centres is followed for two different sampling 

strategies i.e. (a) stride sampling and (b) block sampling. Even though the final set of labels is the 

same for such simple dataset it should be clear that the stride sampling strategy is superior in 

representing the structure of the dataset within each mini-batch. The underlying question is how 

could one assess the quality of the sampling strategy in a real case scenario where direct 

visualization is not possible. In Fig.4(c) we try to answer by looking at the behaviour of the 
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cluster center displacement. We can comment that if such quantity is constantly small with 

respect to the average cluster size, the mini

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor 

sampling strategy.  

Observing Fig.4(d) we note that the inner loop of the proposed 

the partial cost �(�
), does indeed help 

Fig. 4 (a-top row) From left to right the evolution of the cluster 

outer loop in the case of a poorly designed block sampling strategy. (a

evolution of the cluster centres across different iterations of the outer loop in the case of a proper stride 

sampling strategy where each mini-

cluster centres displacement vs outer loop iterations for the two different sampling strategies illustrated in 

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is 

not feasible. (c-top panel) Partial cost functio

colors represent different mini-batches. (c

iterations. It is worth noting how the inner loop iterations within each mini

global cost function. 

4.2. Assessing the degree of approximation

We consider now the MNIST dataset in order to assess the degree of approximation introduced by 

the mini-batch approach and by the a priori sparse representation of the cluster 

our algorithm on the 60000 training samples of MNIST with 

we monitored the resulting clustering 

the clustering accuracy�. Results as well as execution ti

Computer Science & Information Technology (CS & IT)  

cluster center displacement. We can comment that if such quantity is constantly small with 

er size, the mini-batches can be regarded as good representative of the 

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor 

(d) we note that the inner loop of the proposed algorithm, i.e. the minimization of 

, does indeed help in minimizing the global objective function�

top row) From left to right the evolution of the cluster centres across different iterations of the 

outer loop in the case of a poorly designed block sampling strategy. (a-bottom row) From left to right the 

across different iterations of the outer loop in the case of a proper stride 

-batch correctly captures the underlying structure of data.  (b) Average 

displacement vs outer loop iterations for the two different sampling strategies illustrated in 

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is 

top panel) Partial cost function �(�
), ∀� ∈ [0, � = 3] vs number of iterations, different 

batches. (c-bottom panel) Global cost function �(�) 

iterations. It is worth noting how the inner loop iterations within each mini-batch help to bring 

4.2. Assessing the degree of approximation 

We consider now the MNIST dataset in order to assess the degree of approximation introduced by 

batch approach and by the a priori sparse representation of the cluster centre

training samples of MNIST with � = [1,2,4,8], � ∈ [0.
clustering centres against the 10000 test samples in order to compute 

. Results as well as execution times are presented in Fig.5

cluster center displacement. We can comment that if such quantity is constantly small with 

batches can be regarded as good representative of the 

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor 

algorithm, i.e. the minimization of 

�(�). 

 
across different iterations of the 

bottom row) From left to right the 

across different iterations of the outer loop in the case of a proper stride 

batch correctly captures the underlying structure of data.  (b) Average 

displacement vs outer loop iterations for the two different sampling strategies illustrated in 

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is 

vs number of iterations, different 

 vs number of 

batch help to bring down the 

We consider now the MNIST dataset in order to assess the degree of approximation introduced by 

centres. We ran 

.025,1.0] and 

test samples in order to compute 

5. We observe 
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that the algorithm is generally robust across a wide range of the two parameters. The 

clusteringaccuracy slightly decreases when the number of mini

fixed it decreases almost monotonically with 

this suggests us to position ourselves to the top

� ≈ 1. 

Both � and � are trade-off parameters that have t

a desired execution time on a given compute architecture. The available memory for the 

execution can lead to a first value for 

fixed at its maximum. This set of parameters i.e

computational resources available i.e. minimum number of mini

representation of the cluster centroids. One can evaluate the expected execution time for the 

algorithm running it on a single mini

initial requirements then one can first slowly decrease 

execution time too high for 

approximation degree introduced can be self consistently checked using a si

taking as reference the results obtained for the optimal set of parameters 

This rationale should guide the user to finely

dataset. 

Fig. 5(top panel) Cluster accuracy vs 

MNIST training samples evaluated against the 10000

different values of � = [1,2,4,8]. As described in the main text this graph can help understand how to 

perform model selection for the set of newly introduced parameters 

and looking at the clustering accuracy

4.3. Scaling behaviour 

We aim here at assessing the quality of the ad

previous section. In order to do so we tested our algo

IBM NeXtScale machines above described, against the standard MNIST dataset.

We decided to set � = 1in order to run the code in single batch mode since, as already explained, 

our distribution strategy does not involve th
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that the algorithm is generally robust across a wide range of the two parameters. The 

slightly decreases when the number of mini-batches increase and on

fixed it decreases almost monotonically with �dropping to low values when � < 0.2. As expected, 

this suggests us to position ourselves to the top-left part of the graph i.e. few mini

off parameters that have to be fixed. The strategy we suggest here is to fix 

a desired execution time on a given compute architecture. The available memory for the 

execution can lead to a first value for � using Eq.19. As a starting point, the value of 

um. This set of parameters i.e. (�@
A, 1.0). should be optimal for the 

computational resources available i.e. minimum number of mini-batches without sparse 

representation of the cluster centroids. One can evaluate the expected execution time for the 

orithm running it on a single mini-batch, if the expected execution time does not match the 

initial requirements then one can first slowly decrease � and, if this is not sufficient (i.e. expected 

execution time too high for � < 0.2), then increase the number of mini-batches. The 

approximation degree introduced can be self consistently checked using a single mini

reference the results obtained for the optimal set of parameters (�@
A, 1.0).

This rationale should guide the user to finely tune the trade-off parameters also on a

ccuracy vs �. (bottom panel) Execution time vs �. Clustering performed on 

samples evaluated against the 10000 provided test samples. Different colors represent 

. As described in the main text this graph can help understand how to 

perform model selection for the set of newly introduced parameters (�, �) picking a target exec

and looking at the clustering accuracy for the compatible sets of parameters. 

quality of the ad-hoc distribution strategy that we proposed in the 

previous section. In order to do so we tested our algorithm both on the IBM BG/Q and on the 

IBM NeXtScale machines above described, against the standard MNIST dataset. 

in order to run the code in single batch mode since, as already explained, 

our distribution strategy does not involve the outer loop of the proposed method i.e. increasing the 
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batch, if the expected execution time does not match the 

and, if this is not sufficient (i.e. expected 

batches. The 
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. 

off parameters also on a very large 

 
. Clustering performed on 60000 

provided test samples. Different colors represent 
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picking a target execution time 

distribution strategy that we proposed in the 

rithm both on the IBM BG/Q and on the 

in order to run the code in single batch mode since, as already explained, 

e outer loop of the proposed method i.e. increasing the 
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number of mini-batches would have only added a multiplicative constant to the execution time 

equal to �. 

In Fig.6 the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect 

scaling for a wide range of � i.e. 

The discrepancy from the ideal behaviour outside this range can be ascribed to

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as 

described by Amdahl's law. 

Fig. 6 Execution time vs � for two different distributed architectures. IBM BG/Q in b

4.4. Standard datasets analysis

We present here the tests we performed on a state

coming from the Machine Learning community. We show how even a large dataset with

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a 

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784 

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 sa

784 dimensions).The results are collected 

For all the experiments, we used the strided sampling technique, set 

clusters automatically via the elbow criterion

behaviour. As a baseline comparison for the clustering accuracy and the normalized mutual 

information we used a standard python implementation of k

[15]. Results coming from RCV1 are also compared with that ap

Tab. 1 MNIST results and timings for different 

 
B Clustering accuracy

Baseline 84.5 �
1 86.47
4 82.63
16 81.45
64 78.39
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batches would have only added a multiplicative constant to the execution time 

the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect 

i.e. 16 → 1024 on IBM BG/Q and 16 → 256 on IBM NeXtScale. 

The discrepancy from the ideal behaviour outside this range can be ascribed to the portion of code 

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as 

for two different distributed architectures. IBM BG/Q in black/circles and IBM 

NeXtScale in red/squares. 

. Standard datasets analysis 

We present here the tests we performed on a state-of-the-art workstation over standard datasets 

coming from the Machine Learning community. We show how even a large dataset with

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a 

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784 

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 sa

The results are collected respectively inTab.1-3. 

we used the strided sampling technique, set s = 1, selected t

the elbow criterion and setσ = 4d¢£¤in order to mimic a lin

As a baseline comparison for the clustering accuracy and the normalized mutual 

information we used a standard python implementation of k-means from the scikit-learn package 

. Results coming from RCV1 are also compared with that appearing in the literature 

MNIST results and timings for different � values 

Clustering accuracy NMI Execution time 

� 0.62	 0.693 � 0.012	 −	
47 � 0.37	 0.737 � 0.006	 655.23 � 82.92	
63 � 0.91	 0.680 � 0.011	 133.63 � 4.40	
45 � 0.653	 0.670 � 0.010	 32.17 � 2.48	
39 � 0.95	 0.626 � 0.015	 9.51 � 0.58	

batches would have only added a multiplicative constant to the execution time 

the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect 

on IBM NeXtScale. 

the portion of code 

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as 

 
lack/circles and IBM 

standard datasets 

coming from the Machine Learning community. We show how even a large dataset with up to 106 

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a 

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784 

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 samples in 

the number of 

in order to mimic a linear kernel 

As a baseline comparison for the clustering accuracy and the normalized mutual 

learn package 

pearing in the literature [13]. 
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Tab. 2 RCV1 results and timings for different � values 

 
B Clustering accuracy NMI Execution time 

Literature 16.59 � 0.62 0.2737 � 0.0063 − 

Baseline 15.16 � 0.81 0.091 � 0.0052 − 

4 17.41 � 0.83 0.147 � 0.006 797.65 � 53.48 

16 16.52 � 0.74 0.145 � 0.001 170.96 � 4.94 

64 16.15 � 0.60 0.132 � 0.001 77.20 � 3.96 

 
 

Tab. 3Noisy MNIST (106 samples) results and timings for different	� values 

 
B Clustering accuracy NMI Execution time 

Baseline −	 −	 −	
32 64.19 � 1.03 0.541 � 0.005 2334.31 � 25.63 

64 60.97 � 0.3 0.506 � 0.001 1243.81 � 23.43 

 

4.5. Molecular dynamics trajectory clustering 

In this section we analyze the behaviour of the clustering algorithm in terms of the quality of the 

obtained results in the MD domain. Basically, we compared the results obtained by the current 

implementation with respect to the results obtained in [1]. In that paper the binding process of a 

drug to its target was simulated and we used an in house clustering tool to get intermediate states 

of the protein/ligand complex formation along the binding routes. There, we employed the k-

medoids algorithm and we were able to completely characterize the binding process. 

Here we ran again the same kind of analysis systematically verifying that the same, or very 

similar, binding intermediates could be obtained. For the analysis of the structures, we extracted 

the medoids from each cluster. The same atoms as per [1] were used for the clustering.To define 

the number of clusters we used the elbow criterion as in [1] trying the clustering in the (4,40) 

range; in the end, we obtained 20 clusters as an optimal value.  

For each run we initialized 5 times the algorithm with the k-means++ method and kept the 

solution with minimum cost. To assess the accuracy of the approximated algorithm we split the 

dataset in 4 mini-batches each comprising about 250000 samples, thus drastically limiting the 

kernel matrix size with respect to a full run. We used the strided sampling because data was batch 

available and when possible, this sampling should be always used. As previously anticipated, we 

evaluated the quality of the results by the capability of the solution to capture the key events of 

the simulations. In Fig.7(a) we summarize the meaning of the medoids in structural terms using 

the same naming conventions appeared in [1] and associate them with the respective cluster id. 

Overall those medoids well recapitulate the binding process giving the same synthetic description 

obtained in [1] despite the mini-batch approximation. In particular, we show here, in Fig.7(b), the 

distance matrix computed across the medoids; we reordered the columns based on the manual 

classification induced by visual inspection. Results show clearly the three main macro-sections of 

the simulation namely the bound state, the entrance paths and the out unbound states. 
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Fig. 7 (a) Table summarizing medoids for MD data and their labe

axes we indicate the medoid identifiers. On the upper left is well visible the macro

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner, 

unbound states 

5. DISCUSSION 

Mini-batch approaches are not new in the clustering community and encountered a great success 

when applied to standard k-means 

Gradient Descent (SGD) procedure co

of mini-batches to a rather small value, namely 

for the algorithm. 

Our take here is quite different. The number of iterations is by construction e

of mini-batches �in order to exploit the entire dataset. Moreover, a major difference with the 

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe 

that iterating each mini-batch up to convergence

function and to a less noisy procedure. 

A comparison about the clustering accuracy achieved by the two algorithms for the original 

MNIST dataset is shown in Fig.8

as the number of mini-batches 

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less 

sensitive to noise, indeed the clustering accuracy varianc

the SGC procedure. 

We stress also the fact that our parallelization approach is rather different when compared to what 

in literature is referred to as parallel patch clustering, see e.g. 

across mini-batches assigning one mini

within each mini-batch thus allowing the algorithm to cope with virtually any sample size
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(a) Table summarizing medoids for MD data and their labelling (b) Medoids RMSD matrix. On the 

s we indicate the medoid identifiers. On the upper left is well visible the macro-area of the bound states. 

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner, 

batch approaches are not new in the clustering community and encountered a great success 

means [9]. In his work, Sculley showed how a mini-batch Stochastic 

Gradient Descent (SGD) procedure converges faster than regular GD. He proposed to set the size 

batches to a rather small value, namely ≈ 10¥, and to fix an a-priori number of iterations 

here is quite different. The number of iterations is by construction equal to the number 

in order to exploit the entire dataset. Moreover, a major difference with the 

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe 

batch up to convergence can lead to a better minimization of the cost 

function and to a less noisy procedure.  

A comparison about the clustering accuracy achieved by the two algorithms for the original 

8. It is worth noting that our proposed algorithm performs better 

batches � decreases whereas the performances of the SGD procedure 

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less 

sensitive to noise, indeed the clustering accuracy variance is much lower in comparison to that of 

We stress also the fact that our parallelization approach is rather different when compared to what 

in literature is referred to as parallel patch clustering, see e.g. [16]. Indeed, we don't paral

batches assigning one mini-batch per node. Instead, we parallelize the iterations 

batch thus allowing the algorithm to cope with virtually any sample size

 

Medoids RMSD matrix. On the 

area of the bound states. 

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner, the 

batch approaches are not new in the clustering community and encountered a great success 

batch Stochastic 

nverges faster than regular GD. He proposed to set the size 

priori number of iterations 

qual to the number 

in order to exploit the entire dataset. Moreover, a major difference with the 

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe 

can lead to a better minimization of the cost 

A comparison about the clustering accuracy achieved by the two algorithms for the original 

hm performs better 

decreases whereas the performances of the SGD procedure 

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less 

e is much lower in comparison to that of 

We stress also the fact that our parallelization approach is rather different when compared to what 

. Indeed, we don't parallelize 

node. Instead, we parallelize the iterations 

batch thus allowing the algorithm to cope with virtually any sample size. 
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Fig. 8 Clustering Accuracy vs number of mini-batchs� for the proposed algorithm (black line) and the SGD 

k-means procedure proposed by Sculley (red line). Comparison performed on the original MNIST dataset 

with � = 10, ¦ = 4§@¨I to mimic a linear behaviour. 

6. CONCLUSIONS 

In this paper we presented a distributed and efficient approximation scheme for the kernel k-

means algorithm. The approximation scheme applies an adaptive strategy based on the available 

memory resources together with the full exploitation of CPUs and GPUs capabilities. We 

obtained state of the art results in several application domains in terms of accuracy even in a 

heavily approximated regime; moreover, we got linear scaling in several different, distributed, 

computational architectures, something particularly useful in the big data era.  

Next developments will deal with the full GPU porting of the algorithm exploiting GPU direct 

communications facilities of nVidia GPUs and the systematic application to the molecular 

dynamics domain, with particular attention to drug discovery, possibly proposing algorithmic 

extensions to best fit the field requirements. 
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