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ABSTRACT 

 

This paper presents a model to approach the dynamics of infectious diseases expansion. Our 

model aims to establish a link between traditional simulation of the Susceptible-Infectious (SI) 

model of disease expansion based on ordinary differential equations (ODE), and a very simple 

approach based on both connectivity between people and elementary binary rules that define 

the result of these contacts. The SI deterministic compartmental model has been analysed and 

successfully modelled by our method, in the case of 4-connected neighbourhood. 
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1. INTRODUCTION 

 
The outbreaks of infectious disease pandemics have shaped nations and civilizations through the 

ages. History tells us the terrible impact of biblical plagues in Ancient Egypt, bubonic plague in 

Europe in the Middle Age, influenza at the beginning of the twentieth century or AIDS the more 

recently emerging pandemics [1]. Mathematical modeling is playing a very important role to 

assess and control the potential outbreaks [2]. The first paper presenting a model for an infectious 

disease appears in 1760. The author, Bernouilli, a swiss mathematician and physicist, dealt with a 

statistical problem involving censored data in order to analyze smallpox morbidity and mortality 

that aimed to demonstrate the efficacy of vaccination [3]. At the beginning of the twentieth 

century two pioneering works can be mentioned. W.H. Hamer [4] published a discrete time 

epidemic model for the transmission of measles in 1906. The model assumes that the number of 

cases per unit time (incidence) depends on the product of densities of the susceptibles and 

infectives. In 1911 R. Ross [5] demonstrated that malaria is produced by the bite of a mosquito. 
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His mathematical model of expansion is based on a set of equations to approximate the discrete-

time dynamics of malaria and asserts is possible to control the disease whenever the population of 

mosquitos is reduced below a threshold. This was a new and crucial idea. Between 1927 and 1939 

Kermack and McKendrick [6, 7] published papers on epidemic models and obtained the epidemic 

threshold that the density of susceptibles must exceed for an epidemic outbreak to occur. This 

model includes three states, the S (susceptible), I (Infectious) and R (Recovered) instead of the 

two, S and I, of the Bernouilli’s model. From the mid-twentieth century a great variety of 

epidemiological models have been developed after the recognition of the importance of modeling 

in public health decision making [8]. In the nineties, when the scientists began to pay attention to 

complex systems new paradigms spread out in order to better understand and model the impact of 

numerous variables that go beyond the micro host–pathogen level, such as ecological, social, 

economic, and demographic factors. Many scientists coming from such different fields as 

medicine, molecular biology, computer science and applied mathematics or economy have 

teamed up for rapid assessment of urgent situations of contagious diseases by means of a 

multidisciplinary approach. The case of HIV/AIDS pandemic [9-12] is a good example. 

 

This paper presents a model to approach the dynamics of infectious diseases expansion by means 

of a set of neighbour rules between elements located in a lattice that represents the whole 

population. Following the introduction, Section 2 provides a brief summary of the deterministic 

compartmental models and highlights the Susceptible-Infectious (SI) model which has 

traditionally been solved by ODE. Section 3 presents our model which considers the population 

confined in a lattice. The contacts between people are performed by neighbour binary rules, that 

are tailored to model different situations such as Susceptible, Infected, with or without capability 

to infect further. The neighborhood is also defined depending of connectivity. We consider 4-

connection, 8-connection and horse jumping chess connection. The results are compared with 

those of the simulation of ODE. Section 4 presents a discussion upon the suitability of the model 

and proposes futures research. Section 5 summarises the work and presents concluding remarks. 

 

2. MATHEMATICAL MODELLING 

 
Three are the main categories encompassing mathematical modeling [1]. The statistical methods 

deal with real epidemics. They identify their spatial patterns and allow surveillance of outbreaks. 

The empirical models are based on machine learning methods such as data mining that allow the 

forecasting of the evolution of an ongoing epidemic spread. The mathematical or state-space 

methods provide quantitative predictions that have to be validated to forecast the evolution of a 

hypothetical or real epidemic spread. These methods also redefine our understanding of 

underlying mechanisms.  

 

2.1. The Deterministic Compartmental Models 

 
The description used in epidemiologic compartmental models is composed of standard categories 

represented by the variables that model the main characteristics of the system. These 

compartments, in the simplest case, divide the population into two health states: susceptible to the 

infection (denoted by S) and infected (denoted by I) [13]. The way that these compartments 

interact is often based upon phenomenological assumptions, and the model is built up from there. 

Usually these models are depicted by ODE, which are deterministic, but can also be viewed in 

more realistic stochastic framework [14]. To achieve more realism, other compartments are often 

included, namely the recovered (or removed or immune) compartment labelled by R, or the 
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exposed compartment, labelled by E. The stratification of these compartments lead to well-known 

models such as SIS [15], SIR [16], SEIR [17, 18],…or more complex ones [19].  The number of 

variables to be incorporated to the model depends on the particular disease being studied as well 

as on the desired complexity of the model. Other variables incorporated into the equation 

represent fundamental quantities such as birth rate, rate of transmission of infectious agent, death 

rate, and so forth, and are constants that can be changed.  

 

2.2. The Traditional Susceptible-Infectious (SI) Model 

 
In the SI model the two groups are the susceptible hosts, S, that are not infected by the pathogen 

but can get infected, and the infected hosts, I, who are infected by the pathogen. Assuming the 

mass-action model, the rate at which susceptible hosts become infected is a product of the number 

of contacts each host has per unit time, r, the probability of transmission of infection per contact, 

β, and the proportion of the host population that is infectious, I/N, where N = S + I is the total 

population size. This model is suitable to represent the case of the human immune deficiency 

virus (HIV) where there is no recovery. A schematic of the model is shown in Figure 1. 

 

 
Figure 1. SI Model 

 

Equations (1) for the SI model are as follows: 

 
Since the population size is fixed, we can reduce the system to one dimension with the 

substitution S = N – I to provide the logistic Equation (2). 

 

 
We can analytically solve Equation (2) with the initial condition I(0) = I0, so 

 
 

The simulation of the SI model is shown in Figure 2 with the initial value I (0) = I0 = 1 
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Figure 2. Simulation of the traditional SI Model 

 

3. OUR PROPOSAL 

 
Our proposal is based on a set of elementary binary rules that have the capability to model 

interactions between two individuals [20-23]. Without loss of generality we consider a two-

dimensional square lattice, every cell represents a susceptible person except the one at the center 

which locates an infected one. When the infected person contacts with his/her neighbors he/she 

spreads the disease. The new infected people have then the capability to infect other people. 

 

3.1. Binary neighbor rules 

Equation (4) defines a generic binary neighbor rule denoted ⊗. 

 

The ⊗ rule can be represented by a two input table that defines concretely the operation, as shown 

in Figure 3. 

 
Figure 3. Generic neighbor rule represented by a table 

 

Let m stand for the number of the rule. The number is represented by the four bits stored in the 

cells; m = a3 a2 a1 a0, ∈ [0, 2
4
-1]; ai ∈ (0, 1); i ∈ [0, 3]. As an example, we consider m = 7, that is 

to say a3 = 0; a2 = 1; a1 = 1 and a0 = 1. 
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Figure 4. The rule nº 7 represented by a table (a3 = 0; a2 = 1; a1 = 1; a0 = 1) 

The table defines concretely the operation as follows: 

0 ⊗ 0 = 0; 0 ⊗ 1 = 1; 1 ⊗ 0 = 1 and 1 ⊗ 1 = 1 

 

This operation is suitable to model the interaction between infected people and susceptible people 

by identifying “0” as susceptible and “1” as infected. The previous operation means that infected 

people can transmit the disease to susceptible people (1 ⊗ 0 = 1), when infected people contact 

other infected people, all them remain infected (1 ⊗ 1 = 1), susceptible people have no effects 

upon people (0 ⊗ 0 = 0 and 0 ⊗ 1 = 1). 
 

3.2. Neighborhood rules modelling the spreading of a disease 

In the following two-dimensional square lattices we present the spreading of a disease by a 

unique Infected (“1”) located at the center of the lattice. All the empty cells are considered to be 

Susceptible (“0”). The red numbers stand for the generation number (time unit) the spreading 

occurs. Figure 5 shows the case of a 5x5 lattice with a contagion rate ρ = 4 per generation (4-

connected cells are neighbors to every cell that touches one of their edges, following the Von 

Neumann neighbourhood). 

 

 

 
Figure 5. The spreading of a disease in a 5x5 lattice with ρ = 4 (4-connected cells) 

 

The spreading of the disease results in a diamond-shaped region shown for rate = 4 in Figure 5. 

The evolution of the infected people can be carried out by means of the equation 1+2ρ(ρ+1), 

where ρ stands for the rate. 
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The same example is presented for 8-connected cells (with horizontal, vertical, and diagonal 

connection) following the Moore neighborhood, and for the jumping chess neighbourhood. See 

Figures 6 and 7 respectively. 

 

 
 

 
 

Figure 6. The spreading of a disease in a 5x5 lattice with ρ = 8 (8-connected cells) 
 

For the 8-connected neighborhood, the evolution of the infected people can be carried out by 

means of the equation (2ρ+1)2
.  

 

 
 

 
 

Figure 7. The spreading of a disease in a 5x5 lattice with ρ = 8 (horse jumping chess connected cells) 
 

3.3. Comparison Between the Traditional SI Model and the 4-Connected 

Neigborhood Model 

 
The following graph represents the 4-connected case in a 32x32 lattice, equivalent to N=1024 (in 

order to approximate the graphic shown in Figure 2 where N=1000). 
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Figure 8. The spreading of a disease in a 32x32=1024 lattice with ρ = 4 (4 -connected cells). 

The comparison between Figures 2 and 8 suggests that the 4-connected cells (Von Neumann 

neighbourhood) could be a suitable approximation to approach the traditional SI model. In order 

to better compare the models, we now compare the previous simulation based on Equation 2 with 

our 4-connected neighborhood model for similar populations, lattices 10x10, equivalent to N=100 

and 100x100, equivalent to N=10000, See Figures 9 and 10. 

 

 
 

Figure 9. The spreading of a disease in a 10x10 lattice with a ρ = 4 (4 -connected cells), compared to the 

simulation of the traditional model (N=100, βr = 0,82). 

 

 
 

Figure 10. The spreading of a disease in a 100x100 lattice with ρ = 4 (4 -connected cells), compared to the 

simulation of the traditional model (N=10000, βr = 0,182). 
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Empirically, the rate  βr of the traditional simulation of Model SI has been modified when N 

varies in order to impose the crossing point between (I) and (S) occurs at the same “time” 

(obviously we have assumed that “Time” in the traditional model is equivalent to “Generation” in 

ours, as explained in Section 4.). 

 

4. DISCUSSION 

 
Our model establishes a link between the traditional ODE simulation of the SI deterministic 

compartmental model of disease expansion and a very simple model based on both the 

connectivity between people and different rules that define the results of the contacts. The 

parameters of each model must harmonize. Our lattice size stands for N, the number of persons 

(N = S + I). In the ODE model, the number of contacts each host has per unit time, r, and the 

probability of transmission of infection per contact, β,  have been englobed in a unique variable, 

βr, which stands for the number of actual infections that occur in a unit time, which is equivalent 

to the connectivity, ρ, in our model. Obviously, the time scale is different in each model, so, unit 

time may be days, hours, etc... In our model, “Generation” is a dimensionless unit, which only 

means how the sequence of infections occur. In order to allow meaningful comparisons between 

the different approaches we have harmonized the parameters of the models as follows, N ≡ size of 

the lattice and βr ≡ ρ. In this initial paper we have equalized the values of the studied population 

(N=100 or 10000 vs lattice size 10x10 or 100x100, respectively) as well as the crossing point of 

the plotted values of S and I, which is 49, by tuning the value of βr (see Figures 9 and 10). This 

empirical approach reveals the capability of our model to meet the desired values. For a more 

refined modelling some attention should be paid to the slopes, by means of a balanced choice of 

(lattice size, rate, generation). 

 

5. CONCLUSION 

 
We have presented a new approach to the SI deterministic compartmental model. Our proposal is 

based on both connectivity between people and elementary binary rules that quantify the contacts 

between people. Our model fits the results carried out by traditional simulation of ODE. This 

encouraging empirical result must be improved in the future by means of a deeper analysis of the 

connectivity including a probabilistic approach of it. The SIR, SIS, SIRS models will be also 

studied. Finally, experimental data coming from statistics on real cases must be directly 

confronted in order to validate our model. Further we envisage to adapt this model to the field of 

virus expansion in computers. 
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