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ABSTRACT

Biometrics identification using multiple modalities has attracted the attention of many
researchers as it produces more robust and trustworthy results than single modality biometrics.
In this paper, we present a novel multimodal recognition system that trains a Deep Learning
Network to automatically learn features after extracting multiple biometric modalities from a
single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile
face, frontal face, right profile face, and right ear, present in the facial video clips, we train
supervised denosing autoencoders to automatically extract robust and non-redundant features.
The automatically learned features are then used to train modality specific sparse classifiers to
perform the multimodal recognition. Experiments conducted on the constrained facial video
dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a
99.17% and 97.14% rank-1 recognition rates, respectively. The multimodal recognition
accuracy demonstrates the superiority and robustness of the proposed approach irrespective of
the illumination, non-planar movement, and pose variations present in the video clips.
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1. INTRODUCTION

There are several motivations for building robust multimodal biometric systems that extract
multiple modalities from a single source of biometrics, i.e., facial video clips. Firstly, acquiring
video clips of facial data is straight forward using conventional video cameras, which are
ubiquitous. Secondly, the nature of data collection is non-intrusive and the ear, frontal, and profile
face can appear in the same video. The proposed system, shown in Figure 1, consists of three
distinct components to perform the task of efficient multimodal recognition from facial video
clips. First, the object detection technique proposed by Viola and Jones [1], was adopted for the
automatic detection of modality specific regions from the video frames. Unconstrained facial
video clips contain significant head pose variations due to non-planar movements, and sudden
changes in facial expressions. This results in an uneven number of detected modality specific
video frames for the same subject in different video clips, and also a different number of modality
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specific images for different subject. From the aspect of building a robust and accurate model, it
is always preferable to use the entire available training data. However, classification through
sparse representation (SRC) is vulnerable in the presence of uneven number of modality specific
training samples for different subjects. Thus, to overcome the vulnerability of SRC whilst using
all of the detected modality specific regions, in the model building phase we train supervised
denoising sparse autoencoder to construct a mapping function. This mapping function is used to
automatically extract the discriminative features preserving the robustness to the possible
variances using the uneven number of detected modality specific regions. Therefore, by applying
Deep Learning Network as the second component in the pipeline results in an equal number of
training sample features for the different subjects. Finally, using the modality specific recognition
results, score level multimodal fusion is performed to obtain the multimodal recognition result.
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Fig. 1. System Block Diagram: Multimodal Biometrics Recognition from Facial Video

Due to the unavailability of proper datasets for multimodal recognition studies [2], often virtual
multimodal databases are synthetically obtained by pairing modalities of different subjects from
different databases. To the best of our knowledge, the proposed approach is the first study where
multiple modalities are extracted from a single data source that belongs to the same subject. The
main contributions of the proposed approach is the application of training a Deep Learning
Network for automatic feature learning in multimodal biometrics recognition using a single
source of biometrics i.e., facial video data, irrespective of the illumination, non-planar movement,
and pose variations present in the face video clips.
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The remainder of this paper is organized as follows: Section 2 details the modality specific frame
detection from the facial video clips. Section 3 describes the automatic feature learning using
supervised denoising sparse autoencoder (deep-learning). Section 4 presents the modality specific
classification using sparse representation and multimodal fusion. Section 5 provides the
experimental results on the constrained facial video dataset (WVU [3]) and the unconstrained
facial video dataset (HONDA/UCSD [4]) to demonstrate the performance of the proposed
framework. Finally, conclusions and future research directions are presented in Section 6.

2. MODALITY SPECIFIC IMAGE FRAME DETECTION

To perform multimodal biometric recognition, we first need to detect the images of the different
modalities from the facial video. The facial video clips in the constrained dataset are collected in
a controlled environment, where the camera rotates around the subject's head. The video
sequences start with the left profile of each subject (0 degrees) and proceed to the right profile
(180 degrees). Each of these video sequences contains image frames of different modalities, e.g.,
left ear, left profile face, frontal face, right profile face, and right ear, respectively. The video
sequences in the unconstrained dataset contains uncontrolled and nonuniform head rotations and
changing facial expressions. Thus, the appearance of a specific modality in a certain frame of the
unconstrained video clip is random compared with the constrained video clips.

The algorithm was trained to detect the different modalities that appear in the facial video clips.
To automate the detection process of the modality specific image frames, we adopt the Adaboost
object detection technique, proposed by Viola and Jones [1]. The algorithm is trained to detect
frontal and profile faces in the video frames, respectively, using manually cropped frontal face
images from color FERET database, and profile face images from the University of Notre Dame
Collection J2 database. Moreover, it is trained using cropped ear images from UND color ear
database to detect ear images in the video frames. By using these modality specific trained
detectors, we can detect faces and ears in the video frames. The modality specific trained
detectors are applied to the entire video sequence to detect the face and the ear regions in the
video frames.

Before using the detected modality specific regions from the video frames for extracting features,
some preprocessing steps are performed. The facial video clips recorded in the unconstrained
environment contain variations in illumination and low contrast. Histogram equalization is
performed to enhance the contrast of the images. Finally, all detected modality specific regions
from the facial video clips were resized; ear images were resized to 110 X 70 pixels and faces
images (frontal and profile) were resized to 128 X 128 pixels.

3. AUTOMATIC FEATURE LEARNING USING DEEP NEURAL NETWORK

Even though the modalitiy specific sparse classifiers result in relatively high recognition accuracy
on the constrained face video clips, the accuracy suffers in case of unconstrained video because
the sparse classifier is vulnerable to the bias in the number of training images from different
subjects. For example, subjects in the HONDA/UCSD dataset [4] randomly change their head
pose. This results in a nonuniform number of detected modality specific video frames across
different video clips, which is not ideal to perform classification through sparse representation.
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In the subsequent sections we first describe the gabor feature extraction technique. Then, we
describe the supervised denoising sparse autoencoders, which we use to automatically learn equal
number of feature vectors for each subject from the uneven number of modality specific detected
regions.

3.1 Feature Extraction

2D Gabor filters [5] are used in broad range of applications to extract scale and rotation invariant
feature vectors. In our feature extraction step, uniform down-sampled Gabor wavelets are
computed for the detected regions:

. 2 2202 .
() = D R ke =) 1)
where z = (x,y) represents each pixel in the 2D image, k,, is the wave vector,
which can be defined as k,, = ket k, = kmaz L {5 the maximum
frequency, and f 1s the spacing factor between kernels in the frequency domain,
Gy = 3_5'1 and the value of s determines the ratio of the Gaussian window width
to wavelength. Using equation 1, Gabor kernels can be generated from one filter
using different scaling and rotation factors. In this paper, we used five scales,
v e 0,..,4 and eight orientations p € 0, ..., 7. The other parameter values used

are s = 27, kpar = 5, and f = V2.

Before computing the Gabor features, all detected ear regions are resized to
the average size of all the ear images, i.e.. 110 = TD pixels, and all face images
(frontal and profile} are resized to the pverage size of all the face images, 1.e.,
128 x 128 pixels. Gabor features are computed by convolving each Gabor wavelet
with the detected 2D region, as follows:

Couw(2) = T(2) * (2, (2)

where T'(z) is the detected 2D region, and z = (r, y) represents the pixel location.
The feature vector is constructed out of C, ,, by concatenating its rows.

3.2 Supervised Stacked Denoising Auto-encoder

The application of neural networks to supervised learning [6] is well proven
in different applications including computer vision and speech recognition. An
autoencoder neural network 1s an unsupervised learming algorithm, one of the
commonly used building blocks in deep neural networks, that applies backpropa-
gation to set the target values to be equal to the inputs. The reconstruction error
between the input and the output of the network 1s used to adjust the weights
of each layer. An autoencoder tries to learn a function x; = #;, where z; be-
longs to unlabeled training examples set {T(yy, T(2), (2}, ... T(n) }, and z; € R".
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In other words, it is trying to learn an approximation to the identity function,
to produce an output & that is similar to z, in two subsequent stages: (i) An
encoder that maps the input = to the hidden nodes through some deterministic
mapping function f : h = f(x), then (11) A decoder that maps the hidden nodes
back to the original input space through another deterministic mapping func-
tion g : & = g(h). For real-valued input, by minimizing the reconstruction error
||z — g(f(x))||3, the parameters of encoder and decoder can be learned.

To learn features, which are robust to illumination, viewing angle, pose etc.,
from modality specific image regions, we adopted the supervised autoencoder
[7]. The supervised autoencoder is trained using features extracted from im-
age regions (I;) containing variations in illumination, viewing angle and pose,
whereas the features of selected image regions, (r;), with similar illumination
and without pose variations are utilized as the target. By minimizing the ohjec-
tive criterion given in Equation 3 (subject to, the modality-specific features of
the same person are similar), the supervised autoencoders learn to capture the
modality specific robust representation.

z (s — g(f (@:))IZ + A (f () — F(2:)12) : (3)

Wb b.,zi"v

where the output of the hidden layer, h, is defined as h = f(x) = tanh(Wz+
be).glh) = mﬂ.h[‘WTh + bg). N is the total number of training samples, and A
i= the weight preservation term. The first term in Equation 3 minimize the the
reconstruction error, i.e., after passing through the encoder and the decoder,
the variations (llumination, viewing angle and pose) of the features extracted
from the unconstrained images will be repaired. The second term in Equation 3
enforces the simillarity of modality specific features corresponding to the same
Person.

After traiming a stack of encoders its highest level output representation can
be used as input to a stand-alone supervised learning algorithm. A logistic regres-
sion (LR) layer was added on top of the encoders as the final output layer which
enable the deep neural network to perform supervised learning. By performing
gradient descent on a supervised cost function, the Supervised Stacked Denoising
Auto-encoder (SDAE) automatically learned fine-tuned network weights. Thus,
the parameters of the entire SDAE network are fine-tuned to minimize the error
in predicting the supervised target ( e.g., class labels).

3.3 Training the Deep Learning Network

We adopt the two stage training of the Deep Learning Network, where we have
a better imtialization to begin with and a fine tuned network weights that lead
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us to a more accurate high-level representation of the dataset. The steps of two
stage Deep Learning Network training are as follows:

Stepl. Stacked Denoising Autoencoders are used to train the initial network
weights one layer at a time in a greedy fashion using Deep Belief Network (DBN).
Step2. The weights of the Deep learning network are initialized using the learned
parameters from DBN.

Stepd. Labelled training data are used as input, and their predicted classification
labels obtained using the Logistic regression layer along with the initial weights
of the network used as an objective function to fine tune the entire network .
Stepd. Finally, the learned network weights are used to extract image features
to train the sparse classifier.

The network is illustrated in Figure 2, which shows a two-category classification
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Fig. 2. Supervised Stacked Denoising Auto-encoder

problem (there are two output values), where the decoding part of SDAE is re-
moved and the encoding part of SDAE is retained to produce the initial features.
In addition, the output layer of the whole network, which is also called logistic
regression layer, is added. The following sigmoid function is used as activation
function of the logistic regression layer:

1
h(z) = (4)
where z is the output of the last encoding layer ¥, in other words the fea-
tures are pretrained by the SDAE network. The output of the sigmoid function
is between () and 1, which denotes the classification results in case of two class
classification problem. Therefore, we can use the errors between the predicted
classification results and the true labels associated with the training data points
to fine-tune the whole network weights. The cost function is defined as the fol-
lowing cross-entropy function:

M

Cost = _% [Zﬁ"‘”og{h{mm]j + (1 = 1")log(1 — h(z'))|; (5)

i=1



Computer Science & Information Technology (CS & IT)

where ['¥) denotes the label of the sample z'*). By minimizing the cost function,
we update the network weights.

4. MODALITY SPECIFIC AND MULITMODAL RECOGNITION

The modahty specific sub-dictionaries {d}} contain feature vectors generated
by Deep Learning Network using the modality specific tramning data of each
individual subject; where i represents the modality, i € 1,2,...,5; and j stands
for the number of traiming video sequence.

Later, we concatenate the modality specific learned sub-dictionaries d® of
all the subjects in the dataset to obtain the modality specific (ie., left ear,
left profile face, frontal face, right profile face, and right ear) dictionary I);, as
follows.

D; = [dy;dy: . dy)i Vi€ 1,2,..,5 (6)

4.1 Multimodal Recognition

The recognition results from the five modalities — left ear, left profile face,
frontal face, right profile face, and right ear are combined using score level fu-
sion. Score level fusion has the flexibility of fusing various modalities upon their
availability. To prepare for fusion, the matching scores obtained from the differ-
ent matchers are transformed into a common domain using a score normalization
technique. Later, the weighted sum technique is used to fuse the results at the
score level. We have adopted the Tanh score normalization technique (8], which
i= both robust and efficient. The normalized match scores are then fused using
the weighted sum techmque:

M
szz:w.gxs?; (7)
i=1

where w; and s are the weight and normalized match score of the i" modality

M
specific classifier, respectively, such that % w; = 1. In this study, the weights

w;.i=1,2. 3,4, 5; correspond for the left ear, left profile face, frontal face, right
profile face, and right ear modalities, respectively. These weights can be obtained
by exhaustive search or based on the individual performance of the classifiers
[8]. Later, the weights for the modality specific classifiers in the score level fusion
were determined by using a separate training set with the goal of maximizing
the fused multimodal recognition accuracy.
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S. EXPERIMENTAL RESULTS

In this section we describe the results of the modality specific and multi-modal recognition
experiments on both datasets. The feature vectors automatically learned using the trained Deep
Learning network resulted in length of 9600 for frontal and profile face; 4160 for ear. In order to
decrease the computational complexity and to find out most effective feature vector length to
maximize the recognition accuracy, the dimensionality of the feature vector is reduced to a lower
dimension using Principal Component Analysis (PCA) [9]. Using PCA, the number of features is
reduced to 500 and 1000. In Table- 1 the modality specific recognition accuracy obtained for the
reduced feature vector of 500, 1000 is shown. Feature vectors of length 1000 resulted in best
recognition accuracy for both modality specific and multimodal recognition.

Table 1. Modality Specific and Multimodal Rank-1 Recognition Accuracy

Gabor Fea-|Frontal face |Left profile|Right profile|Left ear Right ear  |Multimodal
ture Length face face

No feature|91.43% 71.43% T1.43% B5.7T1% B5.7T1% RE.5TW
reduction

1000 01.43% 71.43% 74.29%, BR.57% BR.57% 07.14%
500 BB.5T% 68.57% BE.5TH B5.7T1% H2.536% O1.42%

The best rank-1 recognition rates, using ear, frontal and profile face modalities for multimodal
recognition, compared with the results reported in [10{12] is shown in Table 2.

Table 2. Comparison of 2D multimodal (frontal face, profile face and ear) rank-1 recognition accuracy with
the state-of-the-art techniques

Approaches  |Modalities Fusion Performed In |Best Reported Rank-1 accuracy

Kiskn et|Ear and Frontal|Decision Level Ear: 93.53%:; Frontal Face: 091.96%;

al.[11] Face Profile Face: NA; Fusion: 95.53%

Pan et al. [12]|Ear and Profile|Feature Level Ear: 91.779%; Frontal Face: NA; Profile
Face Face: 93.46%; Fusion: 96.84%

Boodoo et al.|Ear and Frontal|Decision Level Ear: 90.7%; Frontal Face: 94.7%: Pro-

[10] Face file Face: NA; Fusion: 96%

This Work Ear , Frontal|Score Level Ear: 95.04%: Frontal Face: 97.52%:
and Profile Face Profile Face: 93.39%: Fusion: 99.17%

6. CONCLUSION

We proposed a system for multimodal recognition using a single biometrics data source, i.e.,
facial video clips. Using the Adaboost detector, we automatically detect modality specific
regions. We use Gabor features extracted from the detected regions to automatically learn robust
and non-redundant features by training a Supervised Stacked Denoising Auto-encoder (Deep
Learning) network. Classification through sparse representation is used for each modality. Then,
the multimodal recognition is obtained through the fusion of the results from the modality
specific recognition.
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