

Dhinaharan Nagamalai et al. (Eds) : CoSIT, SIGL, AIAPP, CYBI, CRIS, SEC, DMA - 2017

pp. 09– 16, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70402

INVESTIGATING BINARY STRING

ENCODING FOR COMPACT

REPRESENTATION OF XML DOCUMENTS

 Ramez Alkhatib

1

Department of Computer Technology, Hama University, Hama, Syria

ABSTRACT

Since Extensible Markup Language abbreviated as XML, became an official World Wide Web

Consortium recommendation in 1998, XML has emerged as the predominant mechanism for

data storage and exchange, in particular over the World Web. Due to the flexibility and the easy

use of XML, it is nowadays widely used in a vast number of application areas and new

information is increasingly being encoded as XML documents. Because of the widespread use of

XML and the large amounts of data that are represented in XML, it is therefore important to

provide a repository for XML documents, which supports efficient management and storage of

XML data. Since the logical structure of an XML document is an ordered tree consisting of tree

nodes, establishing a relationship between nodes is essential for processing the structural part

of the queries. Therefore, tree navigation is essential to answer XML queries. For this purpose,

many proposals have been made, the most common ones are node labeling schemes. On the

other hand, XML repeatedly uses tags to describe the data itself. This self-describing nature of

XML makes it verbose with the result that the storage requirements of XML are often expanded

and can be excessive. In addition, the increased size leads to increased costs for data

manipulation. Therefore, it also seems natural to use compression techniques to increase the

efficiency of storing and querying XML data. In our previous works, we aimed at combining the

advantages of both areas (labeling and compaction technologies), Specially, we took advantage

of XML structural peculiarities for attempting to reduce storage space requirements and to

improve the efficiency of XML query processing using labeling schemes. In this paper, we

continue our investigations on variations of binary string encoding forms to decrease the label

size. Also We report the experimental results to examine the impact of binary string encoding on

reducing the storage size needed to store the compacted XML documents.

KEYWORDS

XML Compaction, XML Labeling, XML Storage, Binary encoding

1. INTRODUCTION

The ability to efficiently manage XML data is essential because the potential benefits of using

XML as a representation method for any kind of data. There have been many proposals to

manage XML documents. However, XML Labeling and compaction techniques are considered as

two major approaches able to provide robust XML document storage and manipulation.

1
 Part of this work was done while the author was member of the Database and Information Systems

Research Group, University of Konstanz

10 Computer Science & Information Technology (CS & IT)

Since the logical structure of an XML document is an ordered tree consisting of tree nodes that

represent elements, attributes and text data, establishing a relationship between nodes is essential

for processing the structural part of the queries. Therefore, tree navigation is essential to answer

XML queries. However standard tree navigations (such as depth- first or breadth-first traversals)

are not sufficient for efficient evaluation of XML queries, especially the evaluation of ancestor

and descendant axes. For this purpose, many node labeling schemes have been made. The use of

labeling schemes to encode XML nodes is a common and most beneficial technique to accelerate

the processing of XML queries and in general to facilitate XML processing when XML data is

stored in databases [15].

The power of XML comes from the fact that it provides self-describing capabilities. XML

repeatedly uses tags to describe the data itself. At the same time this self-describing nature of

XML makes it verbose with the result that the storage requirements of XML are often expanded

and can be excessive. In addition, the increased size leads to increased costs for data

manipulation. The inherent verbosity of XML causes doubts about its efficiency as a standard

data format for data exchange over the internet. Therefore, compression of XML documents has

become an increasingly important research issue and it also seems natural to use compression

techniques to increase the efficiency of storing and querying XML data [3, 4, 6, 8]. In our works,

we focused on combining the strengths of both labeling and compaction technologies and

bridging the gap between them to exploit their benefits and avoid their drawbacks to produce a

level of performance that is better than using labeling and compression independently.

In this paper, we continue our investigations on variations of binary encoding forms that would

provide for opportunities to further minimize the storage costs of the labels. The rest of the paper

is structured as follows: Section 2 and 3 review The CXQU and CXDLS compaction approaches

respectively. In Section 4, we present variations of binary encoding schemes can be used to

minimize the storage costs of the labels. Experimental results to study the impact of prefix free

encoding schemes on reducing the storage size are presented in Section 5. Finally, we conclude

and outline future work in Section 6.

Figure 1. Simple XML document with cluster labels

2. THE CXQU COMPACTION APPROACH

CXQU is our proposed approach [1] to represent XML documents. It not only supports queries

and updates but also compacts the structure of an XML document based on the exploitation of

repetitive consecutive tags in the structure of the XML documents by using our proposed labeling

scheme called Cluster Labeling Scheme (CLS) [1]. CLS assigns a unique identifier to each group

Computer Science & Information Technology (CS & IT) 11

of elements which have the same parent (i.e. sibling element nodes). CLS preserves the hierarchal

structure of XML documents after the compaction and supports the managing compacted XML

documents efficiently. It allows insertion of nodes anywhere in the XML tree without the need for

the subsequent relabeling of existing nodes. To compact an XML document with CXQU, first, it

separates its structural information from the content to improve query processing performance by

avoiding scans of irrelevant data values. CXQU then compacts the structure using our algorithm,

which basically exploits the repetition of similar sibling nodes of XML structure, where “similar”

means: elements with the same tag name. CXQU stores the compacted XML structure and the

data separately in a robust compact storage that includes a set of access support structures to

guarantee fast query performance and efficient Updates. Figure 1 displays the cluster labels and

Figure 2 displays the compacted structure of a simple XML document, where the crossed-out

nodes will not be stored.

Figure 2. The compacted structure using CXQU

3. THE CXDLS COMPACTION APPROACH

We also proposed an improved technique called CXDLS [2] combining the strengths of both

labeling and compaction techniques. CXDLS bridges the gaps between numbering schemes and

compaction technology to provide a solution for the management of XML documents that

produces better performance than using labeling and compaction independently. CXDLS

compacts the regular structure of XML efficiently. At the same time, it works well when applied

to less regular or irregular structures. While this technique has the potential for compact storage,

it also supports efficient querying and update processing of the compacted XML documents by

taking advantage of the ORDPATH labeling scheme. ORDPATH [14] is a particular variant of a

hierarchical labeling scheme, which is used in Microsoft SQL Server's XML support. It aims to

enable efficient insertion at any position of an XML tree, and also supports extremely high

performance query plans for native XML queries.

CXDLS helps to remove the redundant, duplicate subtrees and tags in an XML document. It takes

advantage of the principle of separately compacting structure from data and it also uses the

ORDPATH labeling scheme for improving the query and update processing performance on

compacted XML structures.

In CXDLS, the XML structure is compacted based on the basic principle of exploiting the

repetitions of similar nodes in the XML structure, where two nodes N and N' of XML structure

are said to be „similar“ if they are consecutive elements, i.e. sibling nodes, in the structure and

have exactly the same tag name. Another principle is to exploit the repetitions of identical

12 Computer Science & Information Technology (CS & IT)

subtrees, where two subtrees S and S' of XML structure are said to be „identical“ if they are

consecutive and have exactly the same structure. Figure 3 shows the ORDPATH labels and

Figure 4 displays the compacted structure using CXDLS.

Figure 3. Simple XML document with ORDPATH labels

Figure 4. The compacted structure using CXDLS

4. BYTE REPRESENTATION OF THE LABELS

To achieve low storage consumption for XML documents, we have to reduce the size of node

labels. Therefore, both ORDPATH and Cluster labeling schemes used Unicode-like compact

representation that consists of a compressed binary representation and a prefix free encoding. It

uses successive variable length Li/Oi bitstrings and is generated to maintain document order and

allow cheap and easy node comparisons. One Li/Oi bitstring pair represents a component of a

label. Li bitstring specifies the number of bits of the succeeding Oi bitstring. The Li bitstrings are

represented using a prefix free encoding that can be constructed using a Huffman tree, an

example for a prefix free encoding shown in figure 5(a). The binary encoding of a label is

produced by locating each component value in the Oi value ranges and appending the

corresponding Li bitstring followed by the corresponding number of bits specifying the offset for

the component value from the minimum Oi value within that range.

Example: Let us consider the bitstring pairs translation for the label (1.3.22). Note that the first

component ’1’ is located in the Oi value range of [0, 7]. So that the corresponding L0 bitstring is

01 and the length L0 = 3, indicating a 3-bit O0 bitstring. We therefore encode the component “1”

with L0 = 01 and O0= 001. Similar to that the binary encoding of the component “3” is the

bitstring pair L1 = 01, O1 = 011. The component 22 is located in the Oi value range of [8,23] and

its corresponding L2 bitstring 100 and the length L2= 4. Thus the O2 bitstring is 1111 that is the

Computer Science & Information Technology (CS & IT) 13

offset of 15 from 8 specified in 4 bits. As final result the bitstring 01001010111001111 is the

binary encoding of the cluster label (1.3.22).

Variations of prefix free encoding schemes can be created using the idea of Huffman trees, Figure

5 show different forms of prefix free encoding schemes.

Because the labels are binary encoded and stored in a byte array, in the case of use the codes in

Figure 5(a) or the codes in Figure 5(b), the last byte may be incomplete. Therefore, it is padded

on the right with zeros to end on an 8-bit boundary. This padding can lead to an increase in the

storage requirements. For example, by using codes in Figure 5(a), the binary encoding of 1.9 is

010011000001 but its total length in bytes is 2 bytes and will be stored as the following bitstring

0100110000010000. Also by using codes in Figure 5(a), the label 1.9, for example, results in the

bit sequence 0111100001, but it is padded by zeros to store it in 2 byte arrays as

0111100001000000 bitstring. In order to avoid padding with zeros, prefix free encoding scheme,

shown in figure 5(c), was designed in a way that each division already observes byte boundaries.

Bitstring Li Oi value range

Bitstring Li Oi value range

01 3 [0, 7] 01 0 [1, 1]

100 14 [8, 23] 10 1 [2, 3]

101 6 [24, 87] 110 2 [4, 7]

1100 8 [88, 343] 1110 4 [8, 23]

1101 12 [344, 4439] 11110 8 [24, 279]

11100 16 [4440, 69975] 111110 12 [280, 4375]

11101 32 [69976, 4.3×109] 1111110 16 [4376, 69911]

11110 48 [4.3×109, 2.8×1014] 11111110 20 [69912, 1118487]

(a) (b)

Bitstring Li Oi value range

0 7 [1, 127]

10 14 [128, 16511]

110 21 [16512, 2113663]

1110 28 [2113664, 270549119]

1111 36 [270549120 , ~ 237]

(c)

Figure 5. Variations of prefix free encoding schemes

5. THE IMPACTS OF PREFIX FREE ENCODING SCHEMES

In order to examine the impact of prefix free encoding schemes, mentioned in the previous

section, on reducing the storage size needed to store the XML documents that are compacted

using our approaches CXQU and CXDLS. We did experiment to measure and compare the

storage requirements of our approaches and our cluster labeling scheme with other labeling

schemes, such as OrdPath and Dewey [7,14]. In the experiment, each approach is suffixed with a

number that refers to a prefix free encoding scheme, where number 1 refers to Figure 5(a) and so

on respectively. We conducted our experiment using a variety of both synthetic and real datasets

that covered a variety of sizes [5, 9, 10, 11, 12, 13, 16], application domains, and document

characteristics. Table 1 displays the different structural properties of the used datasets.

14 Computer Science & Information Technology (CS & IT)

Table 1. XML datasets used in the experiments

Datasets File name Topics Size
No. of

elements

Max

depth

D1 Mondial Geographical database 1,77MB 22423 6

D2 OT Religion 3,32 MB 25317 6

D3 NT Religion 0,99 MB 8577 6

D4 BOM Religion 1,47 MB 7656 6

D5 XMark XML benchmark 113 MB 1666315 12

D6 NCBI Biological data 427,47 MB 2085385 5

D7 SwissPort DB of protein sequences 112 MB 2977031 6

D8 Medline02n0378
Bibliography medicine

science
120 MB 2790422 8

D9 medline02n0001
Bibliography medicine

science
58,13 MB 1895193 8

D10 Part TPC-H benchmark 6,02 MB 200001 4

D11 Lineitem TPC-H benchmark 30,7 MB 1022976 4

D12 Customer TPC-H benchmark 5,14 MB 135001 4

D13 Orders TPC-H benchmark 5,12 MB 150001 4

D14 TOL Organisms on Earth 5,36MB 80057 243

It is clearly visible from the results of the experiment in Figures 6, 7 and 8, that the use of third

prefix free encoding scheme in our approaches made them more efficient in term of storage

requirements for various XML data sets, when compared to other prefix free encoding schemes.

These results confirm that the success rate of the use of our approaches (SCQX, CXDLS and

cluster labeling scheme) is very high and they can dramatically reduce the storage requirements

for almost all the datasets.

From result in Figure 8, it can be observed that the storage requirements, by using the approach

CXDLS, are very small for the documents such as PART, Lineitem, Order and Customer because

they have a regular structure and CXDLS focuses on compacting regular XML structures. At the

same time the storage requirements are still relatively small for other documents that have either

an irregular structure or less regular structure.

Figure 6. The storage requirements

Computer Science & Information Technology (CS & IT) 15

Figure 7. The storage requirements

Figure 8. The storage requirements

6. CONCLUSIONS

This work investigated prefix free encoding technique created using the idea of Huffman trees.

Our experimental results indicate that it is possible to provide significant benefits in terms of the

storage requirements by using prefix free encoding, our compaction and labeling scheme

techniques. An interesting future research direction is to explore more encoding formats and

study how our compaction techniques could be extended to these formats. Since minimizing the

storage costs can further improve query and update performance, one other possible future

direction is to test the influence of prefix free encoding schemes on the query and update

performance.

REFERENCES

[1] R. Alkhatib and M. H. Scholl. Cxqu: A compact xml storage for efficient query and update

processing. In P. Pichappan and A. Abraham, editors, ICDIM, pages 605–612. IEEE, 2008.

[2] R. Alkhatib and M. H. Scholl. Compacting xml structures using a dynamic labeling scheme. In A. P.

Sexton, editor, BNCOD, volume 5588 of Lecture Notes in Computer Science, pages 158–170.

Springer, 2009.

[3] M. Ali, M. A. Khan: Efficient parallel compression and decompression for large XML files. Int. Arab

J. Inf. Technol. 13(4):403-408, 2016

[4] H. AlZadjali, Siobhán North: XML Labels Compression using Prefix-encodings. WEBIST, pages 69-

75, 2016

[5] J. Bosak. Xml-tagged religion. Oct 1998. http://xml.coverpages.org.

16 Computer Science & Information Technology (CS & IT)

[6] S. Böttcher, R. Hartel, C. Krislin: CluX - Clustering XML Sub-trees. ICEIS, pages 142, 150, 2010

[7] T. Härder, M. P. Haustein, C.Mathis, andM.W. 0002. Node labeling schemes for dynamic xml

documents reconsidered. Data Knowl. Eng., 60(1):126–149, 2007.

[8] M. Lohrey, S. Maneth, R. Mennicke: XML tree structure compression using RePair. Inf. Syst. 38(8):

1150-1167, 2013

[9] D. R. MADDISON, K.-S. SCHULZ, and W. P. MADDI- SON. The tree of life web project.

 ZOOTAXA, pages 19–40, 20 Nov. 2007.

[10] W. May. Information extraction and integration with FLORID: The MONDIAL case study. Technical

Report 131, Universität Freiburg, Institut für Informatik, 1999. Available from

 http://dbis.informatik.uni-goettingen.de/Mondial,.

[11] G. Miklau. Xml repository. http://www.cs.washington.edu/research/xmldatasets.

[12] NCBI. National center for biotechnology information(ncbi) xml data format.

http://www.ncbi.nlm.nih.gov/index.html.

[13] NLM. National library of medicine (nlm) xml data format. http://xml.coverpages.org

[14] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. Ordpaths: Insert-friendly

xml node labels. In G.Weikum, A. C. K¨ onig, and S. Deßloch, editors, SIGMOD Conference, pages

903–908. ACM, 2004.

[15] Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang. Storing and

querying ordered xml using a relational database system. In M. J. Franklin, B. Moon, and A.

Ailamaki, editors, SIGMOD Conference, pages 204–215. ACM, 2002.

[16] T. web project. the tol tree structure. 1998. http://tolweb.org/tree

