

Dhinaharan Nagamalai et al. (Eds) : CoSIT, SIGL, AIAPP, CYBI, CRIS, SEC, DMA - 2017

pp. 17– 27, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70403

USE OF ADAPTIVE COLOURED PETRI

NETWORK IN SUPPORT OF DECISION-

MAKING

Haroldo Issao Guibu
1
 and João José Neto

2

1
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil

2
Escola Politécnica da Universidade de São Paulo, Brazil

ABSTRACT

This work presents the use of Adaptive Coloured Petri Net (ACPN) in support of decision

making. ACPN is an extension of the Coloured Petri Net (CPN) that allows you to change the

network topology. Usually, experts in a particular field can establish a set of rules for the

proper functioning of a business or even a manufacturing process. On the other hand, it is

possible that the same specialist has difficulty in incorporating this set of rules into a CPN that

describes and follows the operation of the enterprise and, at the same time, adheres to the rules

of good performance. To incorporate the rules of the expert into a CPN, the set of rules from the

IF - THEN format to the extended adaptive decision table format is transformed into a set of

rules that are dynamically incorporated to APN. The contribution of this paper is the use of

ACPN to establish a method that allows the use of proven procedures in one area of knowledge

(decision tables) in another area of knowledge (Petri nets and Workflows), making possible the

adaptation of techniques and paving the way for new kind of analysis.

KEYWORDS

Adaptive Petri Nets, Coloured Petri Nets, Adaptive Decision Tables

1. INTRODUCTION

Coloured Petri Nets are an improvement of the original Petri Nets introduced by Carl Petri in the

1960s. Because of their ability to describe complex problems, their use has spread both in the

engineering area and in the administrative area. Adaptive Coloured Petri Nets introduces an

adaptive layer composed of several functions capable of changing the network topology,

including or excluding places, transitions and arcs. In the area of decision support systems, the

tools most used by specialists are the decision tables, which gave rise to several methods to help

managers in their choices.

Among the methods developed for decision support there are the so-called multicriteria methods,

which involve the adoption of multiple, hierarchically chained decision tables. In the process of

improving the decision tables, new features are observed, which, although more complex, give

the specialists the ability to describe their work model in a more realistic way. This paper

describes the operation mode of the decision tables and the way of transcribing the rules of the

tables for extended functions of Petri nets. By embedding a decision table in a Petri net, the

simulation and analysis tools available in the Petri net development environments can be used,

which leads to an increase in confidence in the decision criteria adopted.

18 Computer Science & Information Technology (CS & IT)

2. DECISION TABLES

The Decision Table is an auxiliary tool in describing procedures for solving complex problems

[9]. A Conventional Decision Table, presented in Table 1, can be considered as a problem

composed of conditions, actions and rules where conditions are variables that must be evaluated

for decision making, actions are the set of operations to be performed depending on the

conditions at this moment, and the rules are the set of situations that are verified in response to the

conditions .

. Table 1. Conventional Decision Tables.

 Rules column

Conditions rows Condition values

Actions rows Actions to be taken

A rule is constituted by the association of conditions and actions in a given column. The set of

rule columns should cover all possibilities that may occur depending on the observed conditions

and the actions to be taken. Depending on the current conditions of a problem, we look for which

table rules satisfy these conditions:

• If no rule satisfies the conditions imposed, no action is taken;

• If only one rule applies, then the actions corresponding to the rule are executed;

• If more than one rule satisfies the conditions, then the actions corresponding to the rules are

applied in parallel.

• Once the rules are applied, the table can be used again.

• The rules of a decision table are pre-defined and new rules can only be added or deleted by

reviewing the table.

2.1. Adaptive Decision Tables

In 2001 Neto introduces the Adaptive Decision Table (ADT) [7] from a rule-driven adaptive

device. In addition to rule lookup, an ADT allows you to include or exclude a rule from the rule

set during device operation. As an example of its potential, Neto simulates an adaptive automaton

to recognize sentences from context-dependent languages. In the ADT a conventional decision

table is the underlying device to which a set of lines will be added to define the adaptive

functions.

Adaptive functions constitute the adaptive layer of the adaptive device governed by rules.

Modifying the rule set implies increasing the number of columns in the case of rule insertion, or

decreasing the number of columns in the case of rule deletion. In both cases the amount of lines

remains fixed. The Adaptive Decision Table (ADT) is capable to change its set of rules as a

response to an external stimulus through the action of adaptive functions [7]. However, the

implementation of more complex actions is not a simple task due to the limitation of the three

elementary operations supported by ADT [9].

When a typical adaptive device is in operation and does not find applicable rules, it stops

executing, indicating that this situation was not foreseen. For continuous operation devices, which

do not have accepting or rejecting terminal states, stopping their execution would recognize an

unforeseen situation and constitutes an error.

Computer Science & Information Technology (CS & IT) 19

2.2. Extended Adaptive Decision Tables

To overcome this problem faced by continuous operation devices, Tchemra [9] created a variant

of ADT and called it Extended Adaptive Decision Table (EADT), shown in Table 2

. Table 2. Extended Adaptive Decision Table.

 Adaptive Actions Rules

Conventional Criteria Criteria values

Decision Alternative Actions to be

Table Set of elementary applied

Set of Auxiliary

auxiliary Auxiliary Adaptive actions Functions to be

functions functions called

Adaptive Adaptive Adaptive actions to be

layer functions performed

In EADT, adaptability does not apply only during the application of a rule, but also in the absence

of applicable rules. A modifier helper device is queried and the solution produced by the modifier

device is incorporated into the table in the form of a new rule, that is, in the repetition of the

conditions that called the modifier device, the new rule will be executed and the modifier device

will not need to be called.

3. PETRI NETS

3.1. Ordinary Petri Nets

Petri nets (PN) were created by Carl Petri in the 1960s to model communication between

automata, which at that time also encompassed Discrete Event Systems (DES). Formally, a Petri

net is a quadruple PN= [P, T, I, O] where

P is a finite set of places;

T is a finite set of transitions;

I: (P x T) → N is the input application, where N is the set of natural numbers;

O: (T x P) → N is the output application, where N is the set of natural numbers

A marked network is a double MPN = [PN, M], where PN is a Petri net and M is a set with the

same dimension of P such that M (p) contains the number of marks or tokens of place p.

At the initial moment, M represents the initial marking of the MPN and it varies over time as the

transitions succeed. In addition to the matrix form indicated in the formal definition of the Petri

nets, it is possible to interpret the Petri nets as a graph with two types of nodes interconnected by

arcs that presents a dynamic behaviour, and also as a system of rules of the type "condition →

action" which represent a knowledge base.

Figure 1 shows a Petri net in the form of a graph, in which the circles are the "Places", the

rectangles are the "Transitions". The "Places" and the "Transitions" constitute the nodes of the

graph and they are interconnected through the oriented arcs

20 Computer Science & Information Technology (CS & IT)

Figure 1. Example of a Petri Net

3.2. Reconfigurable Petri Nets

Several extensions of the Petri Nets were developed with the objective of simplifying the

modelling of Discrete Events Systems, even for distributed environments. However, m Several

extensions of the Petri Nets were developed with the objective of simplifying the modelling of

Systems to Discrete Events, even for distributed environments. However, most extensions are not

designed to model systems that change during their operation.

One group of Petri Nets extensions that attempts to tackle the problem of modelling systems that

change during their operation is composed by the Self-Modifying Petri Nets [10], by the

Reconfigurable Petri Nets via graph rewriting [6], by the Adaptive Petri Nets [1] and the

Adaptive Fuzzy Petri Nets [5]. Each of these extensions has its own characteristics, but they share

the fact that they can modify, during execution, the firing rules of the transitions or the topology

of the network.

With the same name, the same acronym, but of different origins, we find in the literature

Reconfigurable Petri Nets (RPN) introduced in [3] and in [6]. The work of Llorens and Oliver is

an evolution of the work of Badouel and Oliver [1] and combines the techniques of graph

grammars with the idea of Valk's Self-Modifying Petri Net, creating a system of rewriting of the

network. In their work, Llorens and Oliver demonstrated the equivalence between the RPN and

the PN in terms of properties and also that the RPN are equivalent to the Turing machines

regarding the power of expression.

In Figure 2 we have schematized a Reconfigurable Petri Net according to Guan [3]. There are two

interdependent layers, the control layer and the presentation layer. The places of the control layer

are different in their nature from the places of the presentation layer.

Each place of the control layer has associated a set of functions that is capable to change the

topology of the presentation layer, that is, they reconfigure the presentation layer. The tokens of

the places are actually functions designed to modify the topology of the presentation layer.

Computer Science & Information Technology (CS & IT) 21

Figure 2. Reconfigurable Petri Net, version of Guan

3.3. Adaptive Petri Nets

An adaptive Petri net was defined by Camolesi [2] from the underlying device scheme plus

adaptive layer as follows:

22 Computer Science & Information Technology (CS & IT)

A⊆C is the subset of PN acceptance configurations;

F = C-A is the set of PN rejection configurations;

BA and AA are sets of adaptive actions, which include empty action;

NA is a finite set of all symbols that can be generated as output by APN in response to the

application of adaptive rules;

(<ba>, (P, T, I, O), <aa>) and operate as follows:

3.4. Adaptive Coloured Petri Nets

The Adaptive Coloured Petri Net uses the same scheme of wrapping the underlying device (CPN)

with an adaptive layer (AL).

ACPN = (CPN, AL) where

CPN is the conventional coloured Petri net,

LA = (AF, AR) is the adaptive layer.

In turn, the adaptive layer is composed by the set of adaptive functions (AF) and by the set of

rules type IF - THEN (AR).

AF is the set of adaptive functions and is embedded in the Adaptive Coloured Petri net.

AR is the set of rules that must be inserted in the Adaptive Coloured Petri net through the

execution of the adaptive functions.

The basic adaptive functions are inspection, insertion or incorporation and exclusion of a rule.

The ACPN uses the same strategy of RPN devised by Guan, but the control layer is a kind of

interpreter of Decision Tables previously defined in order to produce the decision layer.

Computer Science & Information Technology (CS & IT) 23

4. METHODOLOGY

The operation of the ACPN is based on an algorithm composed of four main phases:

Phase I: definition of the underlying decision table, with the inclusion of the criteria, alternatives

and rules of the decision problem;

Phase II: generation of the decision matrix, whose values represent the relative weights and

preferences of criteria and alternatives of the decision maker;

Phase III: transformation of the decision matrix in a XML format, in order to incorporate as a set

of rules.

Phase IV: appending the XML file to the basic ACPN, resulting in the second layer, the decision

layer.

The following example was adapted from [9] to illustrate the sequence of phases mentioned

above, based in a decision procedure proposed in [8]. This is a decision problem in which the

decision maker needs to certify and select suppliers of a particular product for his company. Two

suppliers A and B are analyzed, according to the judgments of the decision-maker in accordance

with selected for comparison:

C1 - Quality of services;

C2 - Flexibility for product delivery;

C3 - Distance from supplier and company location.

In phase I, criteria and alternatives to the problem are introduced in a conventional decision table,

and the decision maker can create an initial set of rule, as showed in Table 3.

Table 3. Initial Decision Table.

 Rule1 Rule2 Rule3 Rule4

Criteria

C1 - Quality Y N N Y

C2 - Flexibility Y Y Y Y

C3 - Distance Y N Y N

Alternatives
A1 – Supplier A X X X

A2 – Supplier B X

In this example, the comparisons between the criteria are shown in Table 4, in which the

decision-maker judges the criteria pairs, obtaining the matrix of reciprocal judgments[7].

Table 4. Judgement Matrix.

 C1 C2 C3

C1 - Quality 1 4 3

C2 - Flexibility 1/4 1 2

C3 - Distance 1/3 1/2 1

After checking the consistency of the values of judgment and normalization of values, the weights

of each criterion are calculated, generating the vector of weights:

24 Computer Science & Information Technology (CS & IT)

W = (0.62, 0.22, 0.16).

According to the judgment of the decision maker, the vector with the weight of each criterion

represents the relative importance of each one. In this example, the resulting weights indicate that

the criterion is more important in relative to others:

Quality: 0.62 - Flexibility: 0.22 -Distance: 0.16.

At this point, it is necessary to check the consistency of the criteria judgments. The matrix of

comparison between the criteria of Table 4 is evaluated for the verification of the degree of

consistency of the judgments, which is given by the consistency ratio (CR), as a function of the

order of the matrix:

a) vector of weights pe = (1.98, 0.69, 0.47)T

b) consistency vector cs = (3.20, 3.08, 3.04)
T

c) eigenvalue λ��� = 3.11

d) consistency index CI = 0.05

e) consistency ratio CR = 0.09

According to [8], the value of CR = 0.09 indicates that the judgments are consistent and

acceptable since CR <10%, otherwise it would be necessary to review Table 4. The next

operation is to obtain the performance matrix. For this, the alternatives are compared to the pairs,

with each of the criteria. The comparisons made by the decision maker in the example are shown

in Table 5.

Table 5. Pairwise comparison matrix.

 C1 C2 C3

 A1 A2 A1 A2 A1 A2

A1 – Supplier A 1 8 1 6 1 4

A2 – Supplier B 1/8 1 1/6 1 1/4 1

Normalizing the matrices, we obtain the following values:

which are performance matrix cells.

Table 6. Performance matrix Z.

 C1 C2 C3

A1 – Supplier A 0.89 0.86 0.80

A2 – Supplier B 0.11 0.14 0.20

From the performance matrix Z we obtain vector ax containing the figures indicating the relative

importance of the alternatives.

Computer Science & Information Technology (CS & IT) 25

 and indicating that in this example the alternative A1 is much

better than the alternative A2 and supplier A must be chosen. Figure 3 shows the Petri Net

version of the initial decision table.

Figure 3. Petri Net equivalent of initial Decision Table

Figure 4. Petri Net Petri net of the decision-making process

Figure 4 summarizes the decision process in a graphical way.

26 Computer Science & Information Technology (CS & IT)

5. CONCLUSIONS

In this paper we show how to incorporate decision tables in Petri nets. Well-established

procedures in decision aid using decision tables can be used in a new tool that has additional

analysis features to detect inconsistencies in procedures [4][13]. In daily activities, the business

expert does not share his knowledge with the factory manager, losing synergy. Sharing two

knowledges that are usually isolated provides a synergy. Good management practices are often

disregarded in the day-to-day running of an enterprise because of the unawareness of the

consequences of certain decisions, which are not always apparent.

In other areas where the use of Petri nets is widespread, gain is also possible, for example in

flexible manufacturing systems [11][12]. Reconfigurable networks can be understood as a

particular case of adaptive networks, where adaptation is achieved through reconfiguration of the

network. The adaptive network is more general than the reconfigurable network because it can

change its behavior while maintaining the same configuration by modifying the firing rules of the

transitions.

In an adaptive network, the rules for operation in case of failures can be incorporated into the

standard network, allowing greater agility in the operation without the need to stop the process

until the experts in the failures take control. The recommendations of the experts would already

be incorporated into the standard Petri net used in monitoring the operation. Reconfigurable

systems during operation are a trend in the design of control systems and the ability to incorporate

procedures from related areas is a feature that cannot be underestimated.

REFERENCES

[1] Badouel E. ; Oliver, J. Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic

Changes in Workflow Systems. (S.l.),1998.

[2] Camolesi, A. R. Proposta de um Gerador de Ambientes para a Modelagem de Aplicações usando

Tecnologia Adaptativa. Tese (Doutorado) —Escola Politécnica da Universidade de São Paulo,

2007.(in portuguese).

[3] Guan S. U. ; Lim, S. S. Modeling adaptable multimedia and self-modifying protocol execution. Future

Generation Computing Systems, vol.20, no 1, pp. 123-143, 2004.

[4] Kheldoun, A., Barkaoui, K., Zhang, J., & Ioualalen, M. (2015, May). A High Level Net for Modeling

and Analysis Reconfigurable Discrete Event Control Systems. In IFIP International Conference on

Computer Science and its Applications_x000D_ (pp. 551-562). Springer International Publishing.

[5] Little T. D. C.; Ghafoor, A. Synchronization and storage model for multimedia objects. IEEE J.

Selected Areas Comm., pp. 413-427, Apr.1990., 1990.

[6] Llorens, M. ; Oliver, J. Structural and dynamic changes in concurrent systems: Reconfigurable petri

nets. IEEE Trans. Comput., vol. 53, no.9, pp. 11471158, 2004.

[7] Neto, J. J. Adaptive rule-driven devices - general formulation and case study. Proc. 2001 Lecture

Notes in Computer Science. Watson, B.W.and Wood, D. (Eds.): Implementation and Proc. 2001

Lecture Notes in Computer Science. Watson, B.W. and Wood, D. (Eds.): Implementation and

Application of Automata 6th International Conf., Springer-Verlag,Vol.2494, pp. 234-250., 2001.

[8] Saaty, T.L., “How to make a decision: the Analytic Hierarchy Process”, Interfaces, Vol. 24, No. 6,

pp19–43, 1994

Computer Science & Information Technology (CS & IT) 27

[9] Tchemra, A. H. Tabela de decisão adaptativa na tomada de decisões multicritério. Tese (Doutorado),

Escola Politécnica da USP, São Paulo, 2009(in portuguese).

[10] Valk, R. Self-modifying nets, a natural extension of petri nets. Lecture NotesLecture Notes in Com,

vol. 62, pp. 464-476, 1978.

[11] Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., & Al-Ahmari, A. M. (2013). R-TNCES: A novel

formalism for reconfigurable discrete event control systems. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 43(4), 757-772.

[12] Zhang, J., Khalgui, M., Li, Z., Frey, G., Mosbahi, O., & Salah, H. B. (2015). Reconfigurable

coordination of distributed discrete event control systems. IEEE Transactions on Control Systems

Technology, 23(1), 323-330.

[13] Zhang, J. (2015). Modeling and verification of reconfigurable discrete event control systems

(Doctoral dissertation, XIDIAN UNIVERSITY).

AUTHORS

Haroldo Issao Guibu
graduated in Electrical Engineering and MSc in Electrical Engineering in Polytechnic

School of São Paulo (EPUSP) University, Brazil. Lecturer at Instituto Federal de

Educação, Ciência e Tecnologia de São Paulo(IFSP) with main interest in Automation,

PLC programming and Automation related adaptive technologies.

João José Neto
graduated in Electrical Engineering (1971), MSc in Electrical Engineering (1975) and

doctor in Electrical Engineering (1980), and "livre docente" associate professor (1993)

in the Polytechnic School of São Paulo (EPUSP) University,Brazil. Nowadays he is the

head of LTA - Adaptive Technology Laboratory at the Department of Computer

Engineering and Digital Systems at the EPUSP. His main experience is in the

Computer Science area, with emphasis on the foundation of computer engineering and

adaptivity. His main activities include adaptive devices, adaptive technology, adaptive

automata and their applications to computer engineering and other areas, especially in

adaptive decision making systems, natural language processing, compiler construction, robotics, computer

education, intelligent system modeling, computer learning, pattern matching, inference and other

applications founded on adaptivity and adaptive devices.

