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ABSTRACT 

 
In this paper a new Binary-to-RNS  converters for multi-moduli RNS based on conjugate-pair as 

of the set { 2
n1

 – 2, 2
n1

 + 2, 2
n2

 – 2, 2
n2

 + 2,   …, 2
nN

 – 2, 2
nN

 + 2 } are presented. 2
n

 – 2 

and  2
n

 + 2 modulies are called conjugates of each other. Benefits of Multi-moduli RNS 

processors are; relying on the sets with pairs of conjugate moduli : 1) Large dynamic ranges. 2) 

Fast and balanced RNS arithmetic. 3) Simple and efficient RNS processing hardware. 4) 

Efficient weighted-to-RNS and RNS-to-Weighted converters. [1] The dynamic range (M) 

achieved by the set above is defined by the least common multiple (LCM) of the moduli. This 

new non-coprime conjugate-pair  is unique and the only one of its shape as to be shown. 
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1. INTRODUCTION 

 
RNS is known to support parallel, carry-free, high-speed arithmetic , because it is considered as 

an integer system, that is appropriate for implementing fast digital signal processors [1] . It is also 

has main importance in Encryption and Cryptography fields. Other applications include – but not 

limited to - Digital Signal Processing, correlation, error detection and correction [1 - 3]. 

RNS basis form is a set of relatively prime integers P = { m1, ….., mk } where gcd (mi, mj ) = 1 

for  i ≠ j. In this paper we are showing that the new non-coprime moduli set presented in [2] could 

be used in the new non-coprime multi-moduli conjugate-pair Weighted-to-RNS converters.  

The set P for prime case is the moduli set with the dynamic range (M) of the system M = π mi. 

But for our case and since each conjugate has the number 2 as a common factor other than the 

number 1 as in the prime one, the M = ∏ mi / 2^(k − 1)
� . 

For both cases  coprime and non-coprime; any integer xͼ [0, M – 1] has an RNS representation X 

= (x1 , … , xk), where xi = X mod mi . 
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The new thing we come up with here is working with a full non-prime moduli set ( i.e. for this 

case )  gcd (mi, mj ) ≠  1 for  i ≠ j                                                                                                             (1)        

                                                                         

RNS systems based on non coprime moduli have also been studied in literature [2] –[5]. 

 

Although as discussed in [2] that non-coprime has little studies upon, we still have strong sense 

that it deserves to work on. 

 

The rest of this paper is organized as follows. In Section 2, overview of the new Non-coprime 

multi moduli is proposed. Section 3 presents the  realization of the proposed forward converter of 

the new non-coprime conjugate-pair multi-moduli , while the paper is concluded in Section 4. 

 

2. OVERVIEW OF NEW NON-COPRIME MULTI –MODULI 

 
Since almost all previous work stated that [1][3][5] " The basis for an RNS is a set of relatively 

prime integers; that is : 

 

S = { q
1

, q
2

, ... , q
L

 }, where (q
i
 , q

j
 ) = 1 for i ≠j                                                              (2) 

with  (qi , qj ) indicating the greatest common divisor of qi  and qj . 

The set S is the moduli set while the dynamic range of the system ( i.e. M ) is the product Q of the 

moduli qi in the set S. Any integer X belonging to ZQ = { 0, 1 2, .... , Q -1 } has an RNS 

representation" . 

X        
RNS

                 ( X1, X2, … , XL)                                                                             (3) 

Xi  =  < X >
qi

 ,       i = 1, 2, .... , L                                                                                        (4) 

Where <X>
q

 is X mod q. 

For our case of non-coprime , equation number 4 becomes : 

Xi  =  < X >
qi

 ,       i =  2, 3,  .... , L                                                                                      (5) 

For both cases ( i.e. Coprime and Non-coprime ), if X, Y have RNS representations { X1, ….., 

XM}, { Y1, … , YM}, the RNS representation of W = X * Y ( * denotes addition, subtraction or 

multiplication ) is  

W          
RNS              { W1, …. , WM }; Wi = < Xi * Yi > qi, i = 1, … , L                         (6)   

Another thing to notice here is that our new proposed non-coprime conjugate-pair multi-moduli 

set is also conjugate even by dividing it by the common factor among its moduli ( i.e. number 2 in 

this case), the shape is to be discussed in another paper. However it has the following form : 
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{ 2
n1-1

 – 1, 2
n1-1

 + 1, 2
n2 - 1

 – 1, 2
n2 - 1

 + 1,   …, 2
nN- 1

 – 1, 2
nN- 1

 + 1 }. 

The proposed Non-coprime multi-moduli set form is : 

S = { 2
n1

 – 2, 2
n1

 + 2, 2
n2

 – 2, 2
n2

 + 2,   …, 2
nN

 – 2, 2
nN

 + 2 }. 

It is clear that each conjugate-pair on the numbers line is 4 spaces apart. As discussed in [2] it was 

shown that having the shape of the new non-coprime moduli set ( i.e. { 2
n

 – 2, 2
n

 , 2
n

 + 2 } ) 

being 4 spaces apart from each other helped in the Forward conversion process (FC) of the 

moduli. The same space for our new non-coprime multi-moduli is useful indeed. 

Lets take an example to show what is meant by the spaces above. 

Ex.1 Let  n1 = 3 , n2 = 4 for the set S. 

Then the set S = { 6, 10, 14, 18 }. 

Numbers ( 6 , 10 ) and ( 14 , 18 ) are 4 spaces from each other on the numbers line. This is true 

for any value taken for  { n1, n2 … , nN }, notice that n1 < n2 < … < nN ; n1 >= 2. 

This is need for the management process to prepare the multi-moduli in good shape. 

Least Common Multiple (LCM) is must be used for the non-coprime case, since there is a 

common factor among the modulus numbers. 

3. NEW NON-COPRIME MULTI-MODULI PROPOSED FORWARD  

CONVERTER 

This section is preferred to be divided into two sections in order to show simply how it works. 

Then from the multi-moduli shape provided it is generalized for size of (N). 

In the first section, we are going to take N = 2, thus the multi-moduli would consist of 4 modulus 

values. The second sub-section we are having N = 3, so there would be 6 modulus inside the 

multi-moduli set. Forward conversion ( i.e. Binary to RNS ) is to be implemented for each case. 

3.1 VALUES SET OF 4-MODULUS 

The multi-moduli set will be of the form, when we take N = 2 : 

 

S = { 2
n1

 – 2, 2
n1

 + 2, 2
n2

 – 2, 2
n2

 + 2 }. 

 

If we take as the first example showed n1 = 3 , n2 = 4 . The shape of the set was : 

 

S1 = { 6, 10, 14, 18 }. 

 

M ( i.e. Dynamic Range of the set ) is calculated through the LCM. For the set S1 it is equal to 



108 Computer Science & Information Technology (CS & IT) 

 

6 * 10 * 14 * 18 / 2
L-1

, where L = the size of the set.                                                                  (7) 

  

For this case L = 4, so M = 1890 .  

 

That means any number in the range [ 0 – 1889 ] has a unique representation among the proposed 

set. This dynamic range is larger than the range for { 2
n1

 – 2, 2
n1

 , 2
n1

 + 2 } which equals 120. 

i.e. 1890 >> 120. 

 

It is also having a larger range than the set { 2
n2

 – 2, 2
n2

 , 2
n2

 + 2 } which has M = 1008. 

i.e. 1890 > 1008. 

 

This is due we are working with 4-moduli set rather than 3-moduli set, and by neglecting the 

middle modulus ( i.e. 2
n

 ) and having the conjugate of  n1 , n2 instead. Mathematically it could 

be shown as : 

 

M1 = 6 * 8 *10 / 4 , M2 = 14 * 16 * 18 / 4 while M3 = 6 * 10 * 14 * 18 / 8 . 

 

Take for M2 case, as it has larger numbers than M1, 16 / 4 < 6 * 10 / 8 or by having 6 * 10 / 2 = 

30, 30 > 16 when comparing them divided 4 ( i.e. having a common base of comparison ). 

 

The conversion process works as the follow, each modulus having the shape 2
n

 – 2 goes to 

Converter number 1, while the 2
n

 +  2 goes to Converter number 2 that works in parallel. 

 

Converter 1 does its work just as figure 1 in [2] showed, figure 2 in the same paper shows 

converter 2 work. 

 

Hardware implementation for each case is shown in figures 3, 5 of [2]. 

 

3.2  VALUE SET OF  6-MODULUS 

 
When we take N = 3, then the multi-moduli set will be on the form : 

 

S = { 2
n1

 – 2, 2
n1

 + 2, 2
n2

 – 2, 2
n2

 + 2, 2
n3

 – 2, 2
n3

 + 2  }. 

 

If we take n1 = 3 , n2 = 4 and n3 = 5 for simplicity. The shape of the set is : 

 

S2 = { 6, 10, 14, 18, 30 , 34 }. 

 

M ( i.e. Dynamic Range of the set ) is calculated through the LCM. For the set S2 it is equal to 

 

6 * 10 * 14 * 18 * 30 * 34  / 2
L-1

, where L = the size of the set.                                         (8) 

  

For this case L = 6, so M = 481950.  
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That means any number in the range [ 0 – 481949] has a unique representation among the 

proposed set. This dynamic range is larger than the range for { 2
n1

 – 2, 2
n1

 , 2
n1

 + 2 } which  

equals 120. 

 

i.e. 481950 >> 120. 

It is also having a very large range than the set { 2
n2

 – 2, 2
n2

 , 2
n2

 + 2 } which has M = 1008. 

 

i.e. 481950>> 1008. 

Finally it has larger range than the set { 2
n3

 – 2, 2
n3

 , 2
n3

 + 2 } which has M = 8160. 

 

i.e. 481950>> 8160. 

 

This is due we are working with 6-moduli set rather than 3-moduli set for each case, and by 

neglecting the middle modulus ( i.e. 2
n

 ) and having the conjugate of n1 , n2 and n3  instead.  

 

Mathematically it could be shown as : 

 

M1 = 6 * 8 *10 / 4 , M2 = 14 * 16 * 18 / 4 , M3 = 30 * 32 * 34 / 4 while  

 

M4 = 6 * 10 * 14 * 18 * 30 * 34 / 32 . 

 

Take for M3 case, as it has the largest numbers than M1 and M2, 32 / 4 < 6 * 10 * 14 * 18 / 32 or 

by having 6 * 10 * 14 * 18  / 8 = 1890, 1890 > > 16 when comparing them divided 4 ( i.e. having 

a common base of comparison ). 

The conversion process works as the follow, each modulus having the shape 2
n

 – 2 goes to 

Converter number 1, while the 2
n

 +  2 goes to Converter number 2 that both works in parallel. 

 

Converter 1 does its work just as figure 1 in [2] showed, figure 2 in the same paper shows 

converter 2 work. 

 

Hardware implementation for each case is shown in figures 3, 5 of [2]. 

 

4. CONCLUSIONS 

 
A new non-coprime multi-moduli set has been proposed. A general formula for the dynamic 

range of it was derived. Algorithm of the special non-coprime multi-moduli set has been 

suggested. Also a new mathematical algorithm for the new non-coprime multi-set has been 

proposed. 

 

This research revealed that non-coprime moduli set may be suitable for wide variety of cases not 

limited to co-prime only ( i.e. Conjugate in multi-moduli ). 
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