
 

Dhinaharan Nagamalai et al. (Eds) : SIGEM, CSEA, Fuzzy, NATL - 2017 

pp. 13– 23, 2017. © CS & IT-CSCP 2017                                                        DOI : 10.5121/csit.2017.70902 

 

 
 

 

COMPARISON OF VOLUME AND 

DISTANCE CONSTRAINT ON 

HYPERSPECTRAL UNMIXING 

 
Zeheng Li

1
 and Fuxiang wang

2
 and Xiurui Geng

3 

 

1
School of Electronic and Information Engineering, Beihang University,  

Beijing Laboratory for General Aviation Technology,  

Beijing Key Laboratory for Network-based Cooperative Air Traffic 

Management, Beijing, 100191, P.R.China 
2
School of Electronic and Information Engineering, Beihang University,  

Beijing Laboratory for General Aviation Technology,  

Beijing Key Laboratory for Network-based Cooperative Air Traffic 

Management, Beijing, 100191, P.R.China 

 

ABSTRACT  

 
Algorithms based on minimum volume constraint or sum of squared distances constraint is 

widely used in Hyperspectral image unmixing. However, there are few works about performing 

comparison between these two algorithms. In this paper, comparison analysis between two 

algorithms is presented to evaluate the performance of two constraints under different 

situations. Comparison is implemented from the following three aspects: flatness of simplex, 

initialization effects and robustness to noise. The analysis can provide a guideline on which 

constraint should be adopted under certain specific tasks. 
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1. INTRODUCTION 

 
Characterized as extremely high spectral resolution and numerous narrow continuous bands, 

hyperspectral remote sensing has raised extensive concerns [1] [18]. Hyperspectral images 

usually consist of mixed pixels due to limited spatial resolution of sensors. Thus, hyperspectral 

unmixing whose purpose is to decompose the mixed pixels into material signature (endmembers) 

and the corresponding abundance fractions, has become a challenging task. 

 

Hyperspectral data unmixing is commonly based on linear mixed model (LMM) [2]. LMM 

hypothesizes that each pixel vector can be represented as the product of the endmember matrix 

and abundance vector. The abundance vector need to satisfy nonnegative and sum-to-one 

constraints. Based on LMM, there are mainly two groups of methods solving hyperspectral 

unmixing problem. The algorithms in the first group require existing pure signatures in 

hyperspectral image, such as Pixel Purity Index (PPI) [3], N-FINDR [4], Vertex Component 

Analysis (VCA) [5], iterative error analysis (IEA) [6]. The algorithms in the second group can 

process image without requirement of pure signatures, such as single individual evolutionary 

strategy (SIE) [7], nonnegative matrix factorization (NMF) [8], minimum volume constraint NMF 
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(MVC-NMF) [10], iterative constrained endmember method (ICE) [11], robust nonnegative 

matrix factorization [19], minimum volume simplex analysis(MVSA) [20]. 

 

2. RELATED WORK 

 
Since there is no requirement on pure signatures for the algorithms in the second group, they have 

been widely used in hyperspectral unmixing [9] [10] [11]. Among them, NMF with minimum 

volume constraint (VC) [10] considers simplex volume composed of the unknown endmembers 

during endmember extraction. VC adopts the commonly used formula to measure the ‘volume’ of 

simplex enclosed by endmembers. Though VC can efficiently restrain simplex volume, it often 

involves massive computation. On the other hand, ICE [11] imposes sum of squared distances 

constraint (SSD) on the original objective function, which can generally achieve satisfied result.  

 

Though algorithms based on VC and SSD have been proposed for several years, there hasn’t been 

any further analysis and comparison of these two methods. Thus, this paper mainly gives a 

detailed comparison of these two methods under various situations. The comparison analysis aims 

to give an instruction on how to choose the constraint under certain situation. To achieve this, the 

comparison includes flatness of simplex analysis, initialization analysis and robustness to noise 

analysis.  

 

3. HYPERSPECTRAL UNMIXING ALGORITHM 

In this section, we’ll briefly introduce linear mixing model and unmixing algorithms based on VC 

and SSD. 

3.1. Linear Mixture Model (LMM)  

LMM [2], [12] assumes that the hyperspectral data is a linear combination of endmember spectra, 

with the weights being proportions. Mathematically, the model is given as: 

 

 x As ε= + ,  

subjected to: 
1

0, 1, , 1
M

k k

k

s k M s
=

≥ = =∑L ，
, (1) 

where, x  is L -dimensional vector ( L  is the number of bands) which is one of the pixel in image, 

s  denotes corresponding abundance, ε  represents possible errors. In real data processing, 

abundance should satisfy two constraints called as nonnegative constraint and sum-to-one 

constraint, as shown in (1).  

 

The matrix involving all pixels in image is shown as Equation(2) 

 X AS= + Θ , (2) 

where 1 2[ , , ]X x x xN= L  represents hyperspectral data which is assumed to be composed with 

material signatures 1 2[ , , ]A a a aM= L  and abundance fractions 1 2[ , , ]S s s s N= L . N is the 

number of pixel. M is the number of endmembers. Θ  is the error matrix. 

 

3.2. Constraints on Endmembers 

For real data, there are substantial local minimum problem due to non-convexity of unconstrained 

objection function.  As shown in  
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Figure 1, the red polyline indicates real simplex for hyperspectral data. Meanwhile, blue and 

black polyline is the solution obtained with different initial value. Since there must be 

corresponding abundance if endmembers enclose all scatters, it is necessary to put certain 

constraint on endmembers, as shown in (3): 

                        
21

( , ) || || ( )
2

A S X AS AFf Jλ= − +                        (3) 

where, ( )AJ  is the constraint added to endmember, λ  is regularization factor to tradeoff the 

reconstruction error and constraint. 

 

Before minimizing (3), several preprocessing steps will be taken to remove noises and reduce the 

dimension of original data, which aims to reduce computation complexity. Then, appropriate 

optimal strategy is used to minimize (3) and update A  and S  iteratively: first, given endmember 

matrix A , calculate the abundance matrix S  by the optimal strategy. Then update A  by fixed 

S  in the same way. After several iterations, (3) will approach its minimum value with A  and S  

well-decided. 

B
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Figure 1. Endmember extraction by unconstraint algorithms. There exist many local minimum solutions 

due to the non-convex property. Although many solutions have relatively minor linear square error, the 

obtained points are still far from scattering, which cannot be regard as appropriate endmembers. 

The volume and distance constraints are briefed as follows: 

 

1. Minimum Volume Constraint  
  

 

VC minimize volume [15] of simplex in its model. In VC, the expression of ( )AVJ  is as for 

those. 

2 11
( ) det ( )

2( 1)!
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=  
−  

                        (4) 

After adding volume constraint, volume of simplex will be compressed as small as possible. 

Meanwhile, the hyperspectral data reconstructed by the extracted endmembers and corresponding 

abundance matrix can also close to real data. Therefore, we can get relatively accurate solution 

for endmember and abundance. 

2. Sum of Squared Distance Constraint  
  

 

In ICE [11], the constraint which minimizes SSD among several endmembers on hyperplane is 

adopted and given as equation (5). Like VC, SSD can also efficiently control the shape of simplex 

during the iteration by minimizing the distance between any two endmembers.  

 
1

1 1

( ) ( ) ( )A a a a a

M M
T

D k l k l

k l k

J
−
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= − −∑ ∑  ,   (5) 

Where, M is the number of endmembers, ak  and al   are any two endmember vectors.  
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In equation (3), the first term intends to decrease reconstruction error, and the second term is used 

to limit the overall ‘volume’ of simplex contrasted by endmembers. During the optimization 

process, we can control the tradeoff between spectral reconstruction accuracy and the 

distance/volume constraint ( )AJ  via λ  . 

 

Furthermore, since abundance must satisfy sum-to-one constraints, we can adjust equation (5) by 

adding 1M  and 1N  to endmember matrix A  and original hyperspectral matrix X  respectively. 

To control the influence of sum-to-one constrains, we introduce a regulation factor α  to 1M  and 

1N , as shown in Equation (6):  

 

1 1
A X

A X

T T

M N
α α   

← ←   
   

       (6) 

4. SIMPLEX PATTERN AND PARAMETER SELECTION 
 

Since algorithm’s performance fluctuated significantly with the variation of simplex pattern, 

analysis of simplex pattern should be significant. Two constraints mentioned above differ in most 

situations. It’s necessary to give a comparative analysis to decide which constraint is more 

operative given certain simplex pattern.  

4.1. Analysis of Simplex Pattern 

As both VC and SSD can restrict simplex of endmember closing to original hyperspectral 

scattering, it is necessary to analyze the equivalence for these two constraints. We mainly do 

analysis in following two situations: First, for regular or quasi-regular simplex, there is a one-to-

one correspondence between volume and distance for simplex, as show in Figure 2(a). In this 

situation, the VC and SSD have a similar performance. 

 

However, when the simplex is not regular, namely non-regular simplex, the relationship between 

volume and distance of simplex is indefinite, as shown in Figure 2(b). In this case, it is necessary 

to analysis which one is better. Since in real hyperspectral data set, simplex for endmembers are 

not always regular, analysis for non-regular case is very important. For convenience, we define η  

as shown in (7) to measure degree of flatness in simplex. 

 

 =
θ

η
π

   (7) 

where, θ  represents the maximum generalized angle of simplex.  

 

Because of the inequivalence in non-regular simplex, flatness analysis is given to identify the 

performance for each constraint. Additionally, to further differentiate VC and SSD, random 

initialization and anti-noise analysis are implemented to compare algorithm performance. 
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(a) regular simplex  

 
(b) non-regular simplex 

 

Figure 2. Relationship between volume and distance for regular/non-regular simplex. In the case of regular 

simplex, the relationship between two constraints is definite, while in the case of non-regular, the 

relationship is indefinite. 

4.2. Parameter Selection 

To present a fair comparison, we need to guarantee all variables except for the constraint item to 

be the same during unmixing process. For further details, (a) the update rule involved in these two 

constraints is fixed to quadratic programming method and steepest descent method respectively. 

(b) The regulation factor λ  is carefully chosen to ensure similar ratio between constraint value 

and reconstruction error in each case. 

 

To decide Dλ  and Vλ  for each constraint, we need to find out the relationship between volume 

V  and sum of squared distance SSD  for regular simplex. The relationship satisfies following 

equation: 

                                                                  
3( ) MV

c M d
SSD

−=                            (8) 

 

where, M  is the number of endmember, c  is a variable only related to M , d  is the distance 

between any two endmembers.  

 

Thus, in order to ensure equivalence of these two constraints, we need to make: 

                                                       
3

1 1

/ ( )

D

M

V V SSD c M d

λ

λ −
= =                                       (9) 

5. EXPERIMENT 

In this part, we analyse application range of these two algorithms. Then we apply these two 

algorithms to real hyperspectral data unmixing and compare the performance. As simplex pattern, 

initial value and SNR are the most important factors in hyperspectral unmixing, we mainly 

conduct the comparative analysis in these three aspects. 

5.1. Comparison Criterion 

In the process of comparing VC and SSD, a suitable comparison metric is needed to measure the 

unmixing performance. Since, endmember data and abundance map can be transferred to 

corresponding vector, we adopt angle distance(AD) which measures angular difference between 

two vectors as criterion, as shown in equation (10). For spectral endmember and abundance map, 

we refer to angle distance as spectral angle distance(SAD) and abundance angle distance(AAD) 

separately. 
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  (10) 

 

where, 
1x  and 

2x are two transformed vectors. AAD is calculated in the similar way. 

5.2. Analysis on Synthetic Data 

For synthetic data, we pick several spectra from spectral library as endmembers. Then we create 

hyperspectral data by multiplying normalized endmember data with abundance map generated 

according to dirichlet distribution. Additionally, Gaussian noise with certain level is also added to 

data.  

1. Flatness Analysis 

In this experiment, we reconstruct hyperspectral data with two bands and three endmembers. To 

demonstrate unmixing capability, we increase the degree of flatness by certain value at each 

experiment. 

 

Then, we implement unmixing algorithm based on VC and SSD on hyperspectral data. The initial 

values for both algorithms are randomly set. We compare experimental result of endmember 

extraction with chosen spectra from library and compute SAD. The result is shown in figure3. 

 

According to Figure 3, we can see that SAD of VC based algorithm is becoming increasingly 

bigger compared to SSD with increase of degree of flatness. Whereas the resulting endmember 

based on VC and SSD are similar when the simplex approaches to the regular form. Therefore, 

we can draw the conclusion that SSD is better than VC when scattering is flat. In real data 

processing, scattering on hyperplane is usually non-regular, so algorithm based on SSD can 

handle most of these cases according to the result above. 
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Figure 3 SAD of VC and SSD based algorithm.  

2. Random Initialization Analysis  

Normally, it is necessary to give an initial value. In this study, we used PPI or N-FINDR to obtain 

a relatively suitable initial value for following iterations. For abundance matrix, it is often 

initialized as random value. However, due to the complexity of real data set, these methods do not 

always perform well on finding well-conditioned initial values. Consequently, the result may be 

trapped into some local minima. Thus, random initial value analysis can give us a view that which 

one is more susceptible to ill initial conditions. We carry out the same random initialization on 

both VC and SSD algorithms, then we compare the result with original true endmember value. 
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We use random values following Gaussian normal distribution as initial value of endmember and 

abundance matrices. We conduct 50 comparison experiments with different initial values. Then 

we compute SAD of resulting endmember data and endmember data in spectral library, as shown 

in Figure 4. 

 

We can see that endmember extraction result based on SSD is obviously closer to original 

endmember data. However, some of the result based on VC absolutely deviate from original 

endmember data. In several cases, though VC-based algorithm also can fit original hyperspectral 

data well, the evaluated endmember data completely differs from original endmember and 

consequently abundance matrix obtained by volume constraint is completely wrong. 
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Figure 4 Solution between two constrained algorithms with random initial values. Simulated hyperspectral 

data consists of 5 bands and 6 endmembers. 

3. Robustness Analysis for Noise 

Since real data consists of much noise, original unmixing algorithm is sensitive to noise for the 

sake of fitting every individual data sample. However, unmixing algorithms based on VC and 

SSD can be applied to unmixing hyperspectral image by minimizing ‘volume’ of simplex. Thus, 

reconstructed data will not inevitably approximate all data samples. As a result, these algorithms 

show strong anti-noise capacity. However, as these two constraints are considered to be 

inequivalent in many cases, noise-sensitivity may be different with each other. Furthermore, we 

need to evaluate the suitable degree of SNR for VC and SSD.  

 

We create 50 50×  hyperspectral data including 5 bands and 6 endmembers. Then, we add white 

noise with different levels to synthetic data. The SNR is 10db, 15db, 20db, 30db. During the 

process of unmixing based on two constraints, we use identical iteration method with same upper 

limit construction error. We implement two constrained algorithms under each SNR ratio with the 

same initial value following Gaussian distribution during each experiment.  
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(a) SAD with 10db SNR 
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(b) SAD with 15db SNR 
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(c) SAD with 20db SNR 
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(d) SAD with 30db SNR 

 

Figure 5 SAD for two constraints with different SNR 

We can see from  

Figure 5, SAD for VC between extracted and real endmember value change little with the decline 

of SNR. On the contrary, SAD for SSD fluctuates with the SNR significantly. Thus, algorithm 

based on VC is more robust than SSD in the sense of noise robustness. 

5.3. Analysis on Real Data 

After finishing the analysis above, we can conclude that SSD is better than VC when hyper 

scattering with high degree of flatness or under ill-conditioned initial values. While VC is better 

in the sense of robustness to noise. However, above-mentioned experiments are based on 

synthetic data. In this experiment, we will utilize real data(AVIRIS data) to identify these two 

algorithms. 

 

The used AVIRIS data over Cuprite, Nevada totally contains 400*350 pixels and 50 bands. We 

do some pre-processes to raw data to reduce computation complexity before iteration. Firstly, we 

utilize principal component analysis (PCA) [16] to reduce data dimension and select principal 

band numbers. Secondly, we need to find good initial endmember and abundance value to ensure 

algorithms can extract real ground objects efficiently. We utilize endmember data extracted by N-

FINDR as initial endmember matrix. Since hyperspectral data can be regarded as the product of 

endmember matrix and abundance matrix, we use unconstrained NMF algorithm to calculate 

corresponding abundance matrix S  as initial value by fixing endmember abundance A .In 

addition, experiment shows that we can achieve much better results by assigning regulation factor 

Vλ  as 0.15 for VC and Dλ  as 0.01 for SSD. 

Table 1 SAD among different algorithm 

 

 N-FINDR Volume Constraint SSD Constraint 

Alunite 4.43 5.45 4.00 

Kaolinite 3.28 5.29 5.35 

Andradite 4.41 5.03 4.35 

Nontronite 4.14 7.58 4.19 

Muscovite 6.16 2.34 4.71 

Chalcedony 3.75 6.86 3.57 

Average 4.36 5.43 4.46 

 

Then, we begin to do iteration for two constraint algorithms until it satisfies terminating 

condition. we can find out best matching mineral obtained by two algorithms via comparing with 

each mineral reflectance in spectral library [17]. 
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As shown in Figure 6, it’s the endmember extraction result based on SSD. Solid line and dashed 

line represent extraction result obtained by SSD and best matched data in spectral library 

respectively. The reflectance is normalized to [0, 1]. From several subgraph results, endmembers 

extracted by SSD are very close to the spectral of real data, like Alunite and Muscovite. The 

closer they are, the smaller SAD is. Table 1 represents SAD for different algorithms. For some 

minerals, SSD gives a better solution. For other minerals, VC performs better. 

 
Figure 6 Extracted endmember by SSD. 

6. CONCLUSION 

In this paper, we analyse VC and SSD algorithm from flatness of simplex, anti-noise and 

initialization to discriminate these two algorithms. We aim to provide a guidance on which 

constraint is more suitable under some special conditions. 

 

First, we do analysis for flatness and conduct three comparative experiments using synthetic data. 

For the pattern of scattering, SSD is better than VC when the scattering is flat. Whereas these two 

algorithms’ performance resemble each other while the simplex is regular. As for initialization, 

endmember extracted under SSD is closer to original data in random initialization. For anti-noise 

performance, VC is more robust in different level of noise. 

 

Eventually, on real data, similar solutions can be achieved for these two constrains with well-

conditioned initial value. Quantitively, for some minerals, SAD of SSD is smaller, like 

Chalcedony in Table 1. Yet, for other minerals, like Muscovite, VC works better. Thus, VC and 

SSD both work similarly in hyperspectral unmixing task.  

 

According to what mentioned above, relatively practical instruction on how to choose constraints 

can be attained. 
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