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ABSTRACT 

 

Speech recognition has been one of the key research domains in computational signal 

processing. Despite high levels of computational complexity associated with achieving speech 

recognition in real-time, promising progress has been made under the umbrella of voice 

controlled robotics. This paper proposes an alternate approach to speech recognition for 

robotics applications, without adding on external hardware. We use a combination of 

spectrograms, MEL and MFCC features and a neural network based classification which is 

usually done offline, whereas the proposed method offers a remote real-time control of the robot 

that can be used to survey terrains that are otherwise impervious for humans, or monitor 

activities inside huge structures like wind-mills, gas pipelines etc. The trained model occupies 

lesser than 4MB on the storage medium of the platform and it also displays metrics of 

confidence and accuracy of prediction. The overall validation accuracy of the algorithm goes as 

high as 97% while the testing accuracy of the system is 95.4%. Since this is a classification 

algorithm, results have been presented on custom voice classification datasets. 
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1. INTRODUCTION 

 
Most speech recognition applications in robotics rely heavily on either hardware based systems 

(like VRBot, GeeTech, RKI-1199 etc.) or Googles Speech API. In both these cases, additional 

requirements come into picture in the form of extra hardware or the need for an internet 

connection. 

 

Now most of the commercial/hobbyist robotic applications are built using System-On-Chip 

(SOCs) like Raspberry Pi, Odroid-XU4, Beaglebone etc. which run on Linux-based RTOS 

platforms and have reasonable computational capabilities. This paper proposes an alternate 

approach to speech recognition for robotics applications, without adding on external hardware. 

We use deep neural networks with only fully connected layers for recognizing different possible 

speech commands given to the drone, via spectrogram classification, in real time. Most of the 
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research done in spectrogram and other features based classification is usually done offline, 

whereas the proposed method offers a remote real-time control of the robot that can be used to 

survey terrains that are otherwise impervious for humans, or monitor activities inside huge 

structures like wind-mills, gas pipelines etc. 

 

The primary contributions of this paper are listed below : 

 

• In this study, we worked with 8 control commands. Histogram equalization was applied 

to the spectrograms before feeding them to the network in order to enhance features for 

the network to learn. Since only 8 words are taken into consideration, speech recognition 

problem turns into a simple 8-class classification problem. 

 

• A novel deep net architecture with a very small memory footprint, which further gives 

decent classification accuracy on custom voice/speech dataset. 

 

2. RELATED WORK 

 
Beard et al. [1] have created several alternative UAV interfaces in which users operate physical 

controllers to generate the requisite numerical commands. These interfaces are built using PDAs, 

full-size computers, a voice-recognition system, a force-feedback attitude joystick, a force-

sensing interface using an IBM TrackPointTM, and a novel physical icon interaction scheme. 

Real-world tests with this interface have demonstrated that ambient wind noise and conversation 

can wreak havoc on the reliability of the voice-recognition system. A method of muting the 

microphone input is required, but even with 2461 such a system in place, considerable difficulties 

arise in environments with strong winds or loud background noises. However, our experience bas 

shown the voice interface to be very valuable, especially under favorable weather conditions. 

 

UAV control stations feature multiple menu pages with systems accessed by keyboard presses as 

presented by Draper et al. [2]. Use of speech-based input may enable operators to navigate 

through menus and select options more quickly. This experiment processed and presented the 

utility of conventional manual input against the speech input for actions performed by UAV 

operators on the control station at two different levels of mission difficulty. Pilots performed a 

continuous flight/navigation control job while keeping in mind to complete eight different data 

input/entry tasks types with each input modality. Results from the experiment have proven that 

speech input and speech recognition based control was significantly better than manual input or 

RC control in terms of task completion time, task accuracy, flight/navigation measures, and pilot 

ratings. Across all the given tasks, data entry time was drastically reduced by approximately 40% 

with speech input. 

 

The AirSTAR testbed developed by Jordan et. al [3] has been developed to provide an in-flight 

capability to validate various flight critical technologies. The testbed is composed of three 

elements: a 5.5% dynamically scaled, turbine powered generic transport model (GTM), a Mobile 

Operations Station (MOS) and associated ground based facilities, and a test range. This research 

capability, along with wind tunnel testing, full scale flight testing, and flight simulation, provides 

the methods and tools to develop and test the technologies demanded by the AvSP. The expanded 

flight envelope of the GTM and the requirements to gather large amounts of data (at high rates) 

presented unique challenges to the development of the AirSTAR testbed. Because the GTM will 

be operating outside of the normal benign flight envelope of full scale transport aircraft and most 
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UAVs, additional measures had to be taken, both on the plane and in the control station, to 

mitigate the risks associated with this type of flight. 

 

McLain et. al [4] UAV research interests have been revolving around cooperative and 

coordinated control of multiple vehicles and real-time trajectory generation and optimization. 

Their primary objectives for experimental testing of their research are to validate the feasibility of 

practical implementation of their methods and to foster innovation to overcome implementation 

challenges. For the control of UAVs, real-world issues such as sensor noise, communication 

dropout, communication delay, and computation latency can degrade performance and lead to 

catastrophic failures. Sensors that are inherently asynchronous with varied sample rates can pose 

challenges for estimation and coordination. Airframe payload capacity influences the choice of 

sensors and onboard computers and thus the inherent capabilities of the vehicle. Environmental 

factors, such as wind, weather, and lighting can adversely affect sensor and control system 

performance. Field tests often expose the unanticipated challenges that must be dealt with in a 

real-world scenario. Furthermore, these challenges often force significant innovations to occur to 

enable success. 

 

Prodeuset. al [5] compared ix noise reduction algorithms with the use of a set of indicators. 

Among them are popular noise reduction algorithms such as spectral subtraction, Wiener filtering, 

MMSE and logMMSE, and two less well-known Wiener-TSNR and Wiener-HRNR algorithms. It 

has been proven that when the noise reduction system is used as preprocessing or of 

automatic/autonomous speech recognition (ASR) system, only a small amount of speech signal 

quality indicators is in significant consensus with the recognition accuracy or classification rate. 

In specific, these include Log-Likelihood Ratio (LLR) and Signal Composite Index (SCI) 

indicators. Furthermore, no single algorithm amongst al of the considered noise reduction 

algorithms, is the top-most in terms of maximum recognition rate for a very huge variety range of 

input signal-to-noise ratio all ranging from -10 dB to +30 dB. 

 

They reviewed the theory of discrete Markov chains and showed how the concept of hidden 

states, can be effectively used. They illustrate the theory with two simple examples, namely coin-

tossing, and the classic balls-in-urns system. They discuss the three fundamental problems of 

HMMs, and give several practical techniques for solving these problems. They also discussed the 

various types of HMMs that have been studied including ergodic as well as left-right models. 

They discussed state density function, onservation duration density, and optimization criterion for 

choosing optimal HMM parameter values. They also discuss the issues that arise in implementing 

HMMs including the topics of scaling, initial parameter estimates, model size, model form, 

missing data, and multiple observation sequences. They described an isolated word speech 

recognizer, that was implemented with HMM. They extend the ideas presented before to the 

problem of recognizing a string of spoken words based on concatenating individual HMMs of 

each word in the vocabulary. They briefly outlined how the large vocabulary speech recognizer 

use ideas of HMM. 

 

A database as well as a recognition experiment was presented in this paper by Hirsch et. al [7] to 

obtain comparable recognition results for the speaker-independent recognition of connected 

words in the presence of additive background noise and for the combination of additive and 

convolutional distortion. The distortions are artificially added to the clean TIDigits database. The 

noisy database together with the definition of training and test sets can be taken to determine the 

performance of a complete recognition system. In combination with a predefined set-up of a 
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HTK(Hidden Markov Model Tool Kit) based recognizer it can be taken to evaluate the 

performance of a feature extraction scheme only. 

 

Hinton et al. [8] reviewed exploratory experiments on TIMIT database and used them to 

demonstrate the power of a two-stage training procedure for acoustic modeling. The DNNs that 

worked well on TIMIT database were then applied to five different large-vocabulary continuous 

speech recognition tasks. Their DNNs worked well on all the tasks and on some the tasks it 

outperformed the state of the art. 

 

According to Graves et. al [9], it is possible to train RNNs end-to-end for speech recognition. 

This approach exploits the larger state-space and richer dynamics of RNNs compared to HMMs, 

and avoids the problem of using potentially incorrect alignments as training targets. The question 

that inspired their paper was whether RNNs could benefit from depth in space. 

 

In this paper by Itakura et. al [10], an approach to the problem was described from a statistical 

point of view, and it was shown that the log likelihood ratio, which is the best criterion to test the 

hypothesis, was reduced to the logarithm of the ratio of prediction residuals, and can be used as a 

powerful distance measure. This result of their research was applied to automatic recognition of 

isolated words, where the sequential likelihood ratio test was adopted to reduce the amount of 

computation. 

 

3. METHODOLOGY 
 

The system was trained on the features of the voice samples (MEL and MFCC) and 

corresponding spectrograms of 15 subjects from 19-22 years of age speaking 8 different words 

that were Takeoff, Land, Forward, Backward, Left, Right, Up & Down in 10 different pitches. 

Among these 15 subjects 9 were male and 6 were female. 

 

An open-source code was used to collect the voice samples and at the same time to create 

spectrograms corresponding to each sample and then all samples were subjected to 9 pitch 

variation. The voice samples were recorded in random order, and there was a 5s hint before each 

sample was collected to tell the subject which word to say. Among the recorded samples, only the 

samples with noise below a particular level were used. 

 

Then MEL and MFCC features were extracted from these voice samples and a batch generator 

was used to extract all 1200 samples at a time. These 1200 samples were split into training and 

test sets. The training and test sets consist of labels of voice samples, the spectrograms and the 

MEL/MFCC features corresponding to each voice sample. 

 

 
Figure 1 : Flow of the Algorithm 
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3.1. Dataset 
 

The dataset (Fig. 2) consists of a total of 1200 recorded voice samples and 1200 spectrograms of 

the subjects from 19-22 years of age speaking 8 different words in 10 different pitches. The 

words were Takeoff, Land, Forward, Backward, Left, Right, Up & Down. The words were 

marked with numbers from ranging from 0-7 (0-Takeoff, 1-Land, 2-Forward, 3-Backward, 4-Up, 

5-Down, 6-Left & 7-Right). The above mentioned words were chosen specifically for UAV 

control because UAVs or drones can execute these commands only, so we do not need an 

extensive speech recognition system for controlling a robot. 

 

A total of almost 3000 voice samples were recorded among which 1200 were marked as correct 

(having noise below the particular level. All the voice samples recorded were in English and each 

of the recorded voice samples last for a period of 5 seconds. Sample Dataset is shown in the 

figure below. 

 

3.2. Feature Extraction 
 

For our research we observed that MFCC and MEL feautre sets to be appropriate for speech 

classification. Also, spectrograms have been made. The extraction methods are explained as 

follows. 

 
 

Figure 2.: Sample Data Audio Plots 
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3.2.1. The Spectrogram 

If x is signal of length N, and considering consecutive clips of x of length m where m <<n and let 

X ∈ R
m(Nm+1) 

be the matrix with the consecutive segments as consecutive columns. In other words, 

[x[0],x[1],...,x[m1]]
T 

is the first column, [x[1],x[2],...,x[m]]
T  

is the second column, and so forth. 

Both the rows and columns of X are indexed by time. We see that X is a not a mathematically 

useful representation of x, whose columns are the Discrete Fourier Transforms of the columns 

 

 

The spectrogram of x with window size m is the matrix  are indexed by frequency and the 

columns are indexed by time. Each location on  Note that the rows of   corresponds to a point 

in frequency and time. So ˆ is a mixed time-frequency representation of x. Because the 

conversion and transformation between X and  is also highly redundant. 

 

The spectrogram is a matrix. To visualize it we can view the matrix as an image with the i, j−th 

entry in the matrix corresponding to the intensity or color of the i, j−th pixel in the image. 

 

The spectrograms of various voice samples have been plotted and shown (Fig. 3) with post 

histogram equalization. Histogram equalization has been done to enhance the features (contrast 

basically) in the spectrograms. 

 

3.2.2. MEL Frequency Cepstral Coefficients (MFCC) 
 

The implementation of Mel Frequency Cepstral Coefficients is one of the standard benchmarked 

method for audio/speech-based feature extraction. There are about 20 coefficients in ASR, 

although speech encoding could be probably achieved with the help of only 12-13 coefficients. 

However, a disadvantage of using MFCC features is it’s sensitivity to noise due to its’ 

dependence on spectral form. It is therefore recommended to use techniques that extract 

information from the periodicity of speech data, which could be used to overcome the above 

mentioned problem, although human speech may also contain aperiodic content. 

 

As an approximation to Mel-frequency scale, the frequency scale that is used here is 

approximately linear for frequencies below the range of 1 kHz and logarithmic for frequencies 

higher than 1 kHz. The motivation for this approximation comes from the fact that the human 

auditory sensory system is comparatively less frequency-selective as frequency increases beyond 

1 kHz. The MFCC features correspond to the cepstrum of the log filterbank energies. To calculate 

them, the log energy is first computed from the filter bank outputs as 
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where Xt[n] is the DFT of the t
th  

input speech frame, Hm[n] is the frequency response of m
th 

filter 

in the filterbank, N is the transformation window size and M is the total number of filters. Then, 

the discrete cosine transform (DCT) of the log energies is computed as follows : 

 

Figure 3 : Spectrograms of the Voice Samples 

 

 

Since the human auditory system is dependent on time based evolution of the spectral content of 

the signal, attempts are often made to include the extraction of this data as part of MFCC feature 

analysis. In order to capture the changes in the coefficients over time, first and second difference 

coefficients are computed as respectively. 
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These dynamic coefficients are then concatenated with the static coefficients  according to 

making up the final output of feature analysis representing the t
th
 speech frame. 

 

 
 

3.2.3. MEL Scale Cepstral Analysis (MEL) 

 

Mel scale cepstral analysis is very similar to perceptual perceptual linear predictive coefficients 

(PLP), where the short term spectrum is modified based on psychophysically based spectral 

transformations. In this method, however, the spectrum is warped according to the MEL Scale, 

whereas in PLP the spectrum is warped according to the Bark Scale. The main difference between 

Mel scale cepstral analysis and perceptual linear prediction is related to the output cepstral 

coefficients. The PLP model uses an all-pole model to smooth the modified power spectrum. The 

output cepstral coefficients are then computed based on this model. In contrast Mel scale cepstral 

analysis uses cepstral smoothing to smooth the modified power spectrum. This is achieved by 

direct conversion of the log power spectrum to the cepstral domain using the standard algorithm 

of Inverse Discrete Fourier Transform (iDFT). 

 

3.3. The VoiceNet Model 
 

In this study, among the 1200 samples extracted using the batch generator, 1080 samples were 

used for training of the model, and 120 samples were used for testing of the model.We used a 

regression neural network that takes an input of size (20,170) consisting of 3 fully connected 

layers, 3 dropout layers and a softmax activation layer. The neural network uses adam as 

optimizer and categorical cross entropy as loss function. The network has been visualized in the 

the following graphic (Fig. 4). The training of the network was carried out on a system with 

specifications listed in Table I. 

 
Table 1: System Specifications 
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Figure 4.: Network Architecture 

 

4. HARDWARE IMPLEMENTATION 
 

Two quadrotors have been tested with this algorithm. 

 

4.1. Bebop 2 
 

An off-the-shelf quadrotor, Parrot Bebop 2 (Fig. 5), compatible with Python programming 

language, was used as hardware platform for algorithm development and testing. WiFi is used for 

communicating between the systems. 

 

 
 

Figure 5: Parrot Bebop 2 

 

4.2. Custom Drone 

 

As a common understanding, there is a requirement for a custom-built quadcopter with onboard 

computational capabilities. The BumbleB (Figure 6), the drone we designed and fabricated, is 

equipped with a companion ODROID-XU4 single-board-computer (see Table II) which runs the 

VoiceNet algorithm. The specifications of BumbleB are tabulated in Table III. 
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Table 2 : ODROID-XU4 Specifications 

 

 
 

Table 3 : Drone Specifications 

 

 
 

 
 

5. EVALUATION AND RESULTS 
 

Since there are not many metrics available pertaining to our current problem statement, we report 

the classification accuracy of our VoiceNet on custom dataset. We also take into consideration the 

various pitches of the subjects who were involved in the study. The VoiceNet model takes 

approximately 1.33 seconds to process an audio sample and predict the word said. This is 

primarily because of the small neural network designed and various features fed into it. The 

break-up of the timing is 0.34 seconds for feature extraction and 0.99 seconds for prediction. 
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Table 4 : Individual Accuracies of Subjects 

 

 
 

6. DISCUSSION AND CONCLUSION 
 
A novel solution to UAV control has been presented in this paper. The fact that a drone does not 

need an extensive speech recognition system to odentify only some keywords like take-off, 

forward etc. This calls for a smaller sized deep nets for speech recognition. Further aspects of this 

research include decreasing the time complexity even further and making the interface more 

robust so that it could be integrated with robots of different nature. 
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