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ABSTRACT  

 

We develop a new approach for distributed computing of the association rules of high 

confidence in a binary table. It is derived from the D-basis algorithm [1], which is performed on 

multiple sub-tables of a table given by removing several rows at a time. The set of rules is then 

aggregated using the same approach as the D-basis is retrieved from a larger set of 

implications. This allows to obtain a basis of association rules of high confidence, which can be 

used for ranking all attributes of the table with respect to a given fixed attribute using the 

relevance parameter introduced in [2]. This paper focuses on the technical implementation of 

the new algorithm. Some testing results are performed on transaction data and medical data. 
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1. INTRODUCTION 

 
In data mining, the retrieval and sorting of association rules is a research problem of considerable 

interest. Association rules uncover the relationships between the attributes of a set of objects 

recorded in a binary table. This, for example, can be a transaction table, where the objects are sale 

transactions and the attributes are groups of products: position (r, c) in the table, in row r and 

column c, is marked by 1 if the transaction r includes a product from that group c, otherwise, it is 

marked by 0. Association rule X → b in the table means that the entire set of transactions shows 

the tendency that whenever a transaction includes products from all groups in set X (i.e., there are 

1s in all columns from X), then some product in group b will appear as well. The confidence of 

such a rule is measured by a portion of all transactions that include b among all transactions that 

have products from X. 

 

In the world of transaction data, a rule X → b with confidence of 0:1 might demonstrate that b 

sells together with all products in group X. 
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There is an immense effort in the data mining community to develop reliable tools for the 

discovery of meaningful association rules. However, the hurdles encountered while developing 

such solutions are numerous. The benchmark algorithms, such as Apriori in Agrawal et al. [5], 

have time complexity that is exponential in regards to the size of the input table. Moreover, the 

number of association rules is staggering, and thus analyzing them requires further tools to obtain 

a short subset of rules that are significant. There are no strong mathematical results confirming a 

particular choice of such short subsets, and numerous approaches to the filtering process are 

described in various publications devoted to the topic. See, for example, Kryszkiewicz [15] and 

Balc´azar [7]. Recent approaches include constraint-based patterns, preference learning, instant 

mining and pattern space sampling, which are often interactive methods targeting user’s implicit 

preferences, see [6], [18], [19]. 

 

One particular subset of association rules, the implications, or rules of full confidence, merit 

particular attention in data mining. They are also at the center of ongoing theoretical research. 

From a practical point of view, implications are the strongest rules available in a given table 

because they hold true for any row of the table. 

 

Some types of data present cases where the implications uncovered in the table contain 

nonessential information because the support of those implications might be very low. The 

support of association rule X → b is the number of rows where ones appear in all columns from  

X ∪	b.	For example, the transaction data might have only a few implications with small sets X, 

whose support could be a single-digit percentage of all transactions. Mining of transaction data 

tends to uncover rules of lower confidence but relatively large support, rather than those 

implications which hold everywhere. 

 

The apriori algorithm and the concept of generating rules of lower confidence are relevant when 

considering medical data. The attributes of a table that represent genetic and clinical data of 

patients (rows) may have a tighter connection than relationships in transaction data, in which case 

the confidence of relevant association rules could be expected to be high and closer to 1. 

Implications would serve as the imperfect representation of the laws of nature in this data. At the 

same time, every data set may contain errors, missing entries and miscalculations. Additionally, 

some patients may have extraneous conditions affecting the value in the target column (e.g., co-

morbidity with an untracked illness). Even if only one row contains such deviations, it may 

prevent us from discovering important implications that would otherwise hold in the table. 

 

Because errors may exist in the data in small numbers, the type of association rules one would 

want to discover would be those rules whose confidence is sufficiently close to one. Where 

”sufficiently close” can be decided on a case-by-case basis. 

 

In this paper, we expand the approach developed in [2] of the extraction of implications and 

ranking of attributes with respect to a target attribute. 

 

Our goal is not to uncover particular rules and rank them with respect to some measurement. 

Rather, we want to generate a basis ∆ of association rules which satisfactorily describes 

dependencies among attributes. We could then use ∆ to rank the importance of attributes with 

respect to target attribute, b. In medical data, b may describe high survival probability of a patient 

after particular treatment, when other attributes may record physical parameters in the patients. 

Having large ∆ is not necessarily a bad feature; on the other hand, the optimally small set is 

desirable. Consider the case where: 
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X → b, X ∪	c	→ b and X ∪	d → b are in the basis and have high confidence. We may want to 

keep A → b in ∆ and remove the other rules which may unnecessarily inflate the relevance of 

attributes c and d for b. This is because attributes c, d could be completely unrelated to b, 

however only appear because they are not explicitly blocked elsewhere.  

 

The paper is organized as follows.We give a short description of the proposed algorithm in 

section 2. In section 3, we explain how the association rules are used to compute the relevance 

parameter of one attribute with respect to the other. In section 4, we discuss the technical 

implementation of the algorithm. We discuss the performance of the algorithm and comparison 

with existing implementations of Apriori algorithm in section 5. In the final section, section 6, we 

summarize the future work that we plan to do with our approach. 

 

2. GENERAL FLOW OF THE ALGORITHM 
 

Herein we describe a several stage approach that allows us to compute, beyond just implications, 

the potentially most valuable association rules whose confidence is rather high, say, > 0.9 

 

At the core of our approach is the connection between a binary table, its implications, and the 

closure operator defined on the set of columns and associated lattice of closed sets, known as the 

concept lattice or Galois lattice, see [11]. 

 

An algorithm in Adaricheva and Nation [1] works to extract the basis of implications of the table, 

and it is known as the D-basis, which was introduced in Adaricheva, Nation, and Rand [3]. The 

advantage of this basis is in the possibility to use algorithms for dualization of an associated 

hypergraph that are known to be sub-exponential in their complexity, see Fredman and 

Khachiyan [10]. The algorithm in [1] avoids generating the Galois lattice from the table and only 

uses the arrow relations, which can be computed in polynomial time, to produce a hypergraph for 

each requested attribute. In that way, the existing code for hypergraph dualization, such as in 

Murakami and Uno [16], can be borrowed for execution. 

 

The main idea of the current algorithm follows from the observation that the association rules of 

high confidence may be computed by removing one or more rows (objects) from the table and 

computing implications (on attributes) of the shorter table. Upon the program’s execution and 

output, one can record only new implications that were not present in the original data set. 

 

A new rule may be derived from the shorter table given that one of the removed rows contradicts 

it. If new rules are present in this table and exhibit high support, or if numerous new rules are 

found with average support, then the row(s) temporarily removed to form this shorter table are 

called blockers due to their tendency to block the rules that were found with their removal. 

 

We can choose various strategies to identify the set of blockers. Together with several 

straightforward statistics on new rules found on a shorter table, we are considering several 

heuristics and ranking systems. The goal is to identify a set S of rows/objects that are potential 

blockers. 

 

In the next stage of the suggested procedure we choose n ≤ | S | which is a number of rows from S 

that will be deleted from original table to form a shorter table. With S and n fixed, we can run 
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algorithm k times, where k is specified by a user, and limited by   

which is a number of combinations to choose n rows from set S. If k < C (|S|, n), then the choice 

can be done randomly, otherwise, the rows can by systematically removed. 

 

This process of removing sets of rows and re-running the program can be organized in parallel, 

and all the outputs combined and aggregated following the same procedure as used to aggregate 

the D-basis of implications in original D-basis algorithm. 

The final set of rules is guaranteed to have the probability of at least  that each rules holds 

in a table, where N is the total number of rows(objects) in the table, and n is the number of 

deleted rows in each run of the algorithm. If s is the support of some implication A → b in a 

shortened table with N – n rows, then on average the support of A in n deleted rows will be 

 
 

In worst case scenario, i.e. when b = 0 in all deleted rows, the support of A → b on n deleted 

rows will be 0. This will give a lower estimate of the confidence of association rule A → b in the 

full table as  

 

For example, given an original table of 90 rows, the confidence of a rule found as an implication 

in a sub-table of 80 rows, i.e., after deleting 10 rows, will be, on average, around  

 

3. RANKING THE ATTRIBUTES OF THE TABLE WITH RESPECT TO A 

GIVEN FIXED ATTRIBUTE 

 
The algorithm described in the previous section, when we try to identify the blockers among the 

objects/rows of the data, can be interpreted as unsupervised learning about the data set. These 

blockers are then interpreted as outliers. 

 

In this section we will take a look at supervised exploration of the data set, when one of the 

parameters is a target column/attribute, and we try to discover other attributes which might be 

essential for describing the behavior of the target parameter. 

 

The algorithm in [1] allows us to retrieve only those implications X → b in the D-basis that have 

a fixed attribute b as a conclusion. This is called a b-sector of the basis. It is important to notice, 

for comparison with Apriori algorithm in section 5, that one does not need to obtain the full basis 

in order to get particular b-sector of the basis. 

 

In our current approach, instead of the set of implications, we obtained the set ∆ of association 

rules, where we traded the confidence for the higher support of the rules. We choose a number of 

shorter tables, as described in algorithm of section 2, and compute b-sectors of implications. A 

final part of the algorithm then performs a special trimming of the rules, called an aggregation, 

only leaving the strongest rules with respect to the binary part of ∆, which consists of rules of the 

form a → d. Thus, in order to obtain the b-sector of basis ∆, one needs only the binary part of ∆ 

and combination of b-sectors of implications of shorter tables. The resulting b-sector of ∆ after its 
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aggregation will be denoted ∆(b). Note that one can generate multiple sets ∆(b), thus, following 

computations will depend on the particular instance of ∆(b). 

 

Similarly, we could make the formation of  where the original attribute was replaced by 

its complement  

 

Having fixed  and we then used the approach described in [2] to rank the attributes 

by the relevance parameter. 

 

For any attribute a, the relevance relb(a) of a to b is computed based on frequency of a appearing 

in the antecedents of implications/association rules related to b in b-sectors  and  

From this definition one can see some relation between the relevance parameter and conviction, 

see for example [21]. 

 

The computation of this parameter takes into account the support of each individual implication 

in the basis where a appears. Since this time we have association rules of different confidence, we 

include the confidence into computation of the relevance as well. For rule α = (X → b), con f (α) 

=  

 

We believe that, for each attribute  the important parameter of relevance of this 

attribute to  is a parameter of total support, computed with respect to set of rules ∆: 

 

 
 

Thus tsupb(a) shows the frequency of parameter a appearing together with some other attributes 

in implications X → b of set ∆(b). The contribution of each implication X → b, where  

into the computation of total support of a is higher when the support of  X  is higher, i.e., column 

a is marked by 1 in more rows of the table, together with other attributes from X, but also when X 

has fewer other attributes besides a. 

 

While the frequent appearance of a particular attribute a in implications X → b might indicate the 

relevance of a to b, the same attribute may appear in implications  

 

Replacing  in above formula, we can also compute the total support of  for 

each  

 
 

Define now the relevance of parameter  to parameter b, with respect to bases  

and  
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The highest relevance of a is achieved by a combination of high total support of a in rules X → b 

 and low total support in rules  This parameter provides the ranking of all parameters 

 
 

As we indicated above, the computation of the relevance can be done not only with implications 

but with any set of association rules ∆. We believe that association rules of high confidence may 

provide a better set for computation of the relevance. 

 

Observation with the data shows, and theoretical results confirm [4], that a rule A → b that fails in 

one or a few rows of table may appear through the set of implications A ∪	d → b, with multiple 

attributes d, which may inflate tsupb(a) for element . When one or a few rows failing the 

rule A → b are deleted, then A → b will be discovered, and the process of the aggregation will 

eliminate all the rules A ∪	 d → b from the final set of rules used for computation of the 

relevance. 

 

4. TECHNICAL IMPLEMENTATION 

 
Sequential algorithms are of little practical use when dealing with sufficiently computational 

complex problems and/or sufficiently large problems [8]. Since the beginning of the demise of 

Dennard’s scaling in the mid 2000’s [9], the focus of mainstream computing hardware has moved 

away from sequential acceleration into parallel acceleration using multiple cores of execution 

[14]. Since then, algorithms can no longer rely on regular incremental improvements in serial 

execution speed due to Dennard’s scaling. Instead the focus of high performance programming 

shifted to parallel algorithms. In addition, due to the demands of the age of big data and the 

decline in custom computing hardware, many of the algorithms in use today must also scale 

beyond the confines of a single homogeneous computing environment into a distributed 

heterogeneous execution environment [8]. 

 

Finding association rules is a computationally complex problem [1] and our approach is meant to 

address this issue using a collection of parallelizable algorithms that are scalable in a distributed 

processing environment. 

 

4.1 Algorithm Descriptions 

 
At the heart of our new approach for discovering new implications are two highly parallelizable 

algorithms: 

 

1. One Row Delete Algorithm (ORD) - Remove rows from the original table one row at a 

time and check for new discoverable rules. 

 

2. Multiple Row Delete Algorithm (MRD) - Remove groups of rows from the original table, 

aggregate the new rules and discover new rules that emerge from the aggregation. 

 

The following code listings are written in pseudo C++ code; some code is omitted for brevity. 
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Listing 1.1: One Row Delete Algorithm(ORD) 

 

 
 

The ORD algorithm (seen in listing 1.1) breaks the problem of finding blocking rules in the 

original table into a list of N sub-problems where N is equal to the number of rows in the original 

table. In each of the sub problems we then need to discover new rules given a mutated original 

table with one of the N rows removed. 

 

We start by generating the base list of implications without changes to the original table (line 2). 

Then we mutate the table (line 5) by removing different rows in each iteration of the loop and 

generate a new list of rules (line 6). In the next step we make sure the new rules are previously 

undiscovered by comparing them to the original rules and removing any repetitions (line 7). In 

the last step (line 8) we report the new rules. As can be seen in lines 5–8 of the algorithm, each 

iteration of the for loop can be executed in parallel, therefore allowing us to spawn up to N 

parallel executions of the DBasis algorithm. 

 

Communication overhead and synchronization between parallel execution units are important 

factors in performance of parallel algorithms [8]. In the ORD algorithm only the original table 

and the list of rows to be removed need to be communicated across parallel execution unit 

boundaries. In addition, no synchronization is necessary since each parallel unit can have its own 

copy of the original table and the row/rows to remove. 

 
Listing 1.2: Multiple Row Delete Algorithm(MRD) 

 

 
 

The MRD algorithm (seen in listing 1.2) shares much of the ideas and code with the ORD 

algorithm but differs in the following ways: 

 

1. It works on groups of rows instead of one group at a time (line 6) 

 

2. The new rules are aggregated inside the for loop (line 9) 
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3. we only calculate the support in the end of the loop after aggregating all the new rules 

found in each loop iteration (line 11) 

 

The MRD algorithm allows us to execute lines 6–7 of each iteration of the for loop in parallel. 

Discovering new rules and accumulating the results of each iteration needs only to wait for 

individual iterations to complete in order to perform partial summing of the results (lines 8–9). 

The only part that needs to wait for all parallel iterations to complete is calculating the aggregated 

support (line 11). 

 

5. TESTING 

 
In addition to core programs discussed in previous section, this project develops a series of 

additional subroutines that perform secondary analysis of retrieved rules. We treat the output as 

an aggregated set, or basis of rules, that allows for statistical analysis. 

 

First, we performed a series of tests with random matrices whose sizes mimicked real data at 

various densities (total number of ones in the matrix divided by the total number of entries) to 

investigate two things: the densities for which the algorithm may uncover a considerable number 

of rules, and to find the average relevance of rules in random matrices. Initial results indicate that 

the probability of obtaining high relevance of one attribute with respect to another remains very 

low for densities 0.3-0.4, and it increases when the density increases. 

 

Testing shows that randomly generated binary tables may have pairs of attributes a, b such that 

the relevance parameter relb(a) could be considerably higher than 1. Several thousand random 

binary tables of fixed size 20 x 32 and two different densities were analyzed, and their relevance 

characteristics are described in table 1. A slightly more thorough comparison is done in Fig:1, 

which shows the average relevance of random attributes. This data implies that a minimum 

relevance threshold might be recommended for practical data analysis given the possibility of 

unimportant attributes being ranked highly. 

 

 
 

Fig. 1: A how random noise presents itself in the relevance of rules. 
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We also simulated data that carries a few essential rules and imposed various levels of the noise 

to observe whether ORD or MRD would recapture the rules which were blocked by simulated 

noise, defined as a certain probability p that b would become  In many cases the data was 

recaptured, although the supporting statistics were diminished. Relevance decreased inversely 

proportional to the amount of noise added, leveling off at around 40-50% noise. After this, many 

attributes’ relevance statistics were indistinguishable from the rules generated by noise. 

 
Table 1: Example of the relevance at two densities 

 
 

These studies will be presented in the full size publication when all the testing is summarized and 

analyzed. We are planning to use the method for analysis of medical or biological data where we 

are looking for the rules of confidence close to 1. 

 

For the purposes of this short presentation we ran a comparison of our approach with existing 

implementations of Apriori algorithm. 

 

We conducted our tests on Ubuntu 14.04.1(VM) running on Intel(R) Xeon(R) CPU E5-2660 v2 

@ 2.20GHz with 4 cores and 16GiB of DDR3 RAM provisioned. 

 

Two data sets were used: one transactional set and one medical. 

 

The first data set was taken from the Frequent Itemset Mining Dataset Repository [25]. It is the 

retail market basket data from an anonymous Belgian retail store.We took the first 90 rows, 

converted them to a binary matrix format with size 90502 and (low) density 0.0162. 

 

For our initial D-basis run, the time was 17.60 seconds, resulting in 422,273 implications of 

support ≥ 1. 

 

At the time of writing, our implementation of the MRD algorithm is sequential. It takes 42.63 

minutes to run the D-basis program on the original table and then a batch of 200 smaller sub-

tables (with several of rows removed). 

 

For the Apriori implementation, we initially used Microsoft SQL Server Business Intelligence 

Development Studio, 2008 (Data Mining Technique Microsoft Association Rules) [22]. It is 

worth noting that Apriori was designed specifically for mining association rules in retail data, 

which is normally produces the table of low density. The parameters for Microsoft were: minimal 

support = 3, confidence (probability)= 1.0, max number of rules = 9000, the ranking by 

‘importance’ (= ‘lift’). 

 

Most of the 9000 rules were weaker rules than those given by the D-basis algorithm. For example 

the top rule found by Microsoft, ranking by the lift, was 96, 48 → 95, which corresponds to 

equivalence 96  95 in the D-basis. On the other hand, some of the rules of support 5 and 8 from 

the D-basis did not appear on the 9000 list (majority of the rules in the 9000 set have support 1). 

 

We then tested with the Apriori algorithm implemented in the R package ’arules’ [12].We ran  
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with the following parameters: minimum support = 3, max time = 10 (default), confidence 

(probability) = 0.8. There were 9 rules reported back from ’arules’, with only two rules having 

confidence < 1. 

 

The test with R found similar set of rules as the batch of 200 runs in MRD algorithm with 10 

random rows removed at a time. All the rules found in R’s Apriori function were accounted for in 

the output of our program. On the other hand, our batch revealed that some of rules found by our 

algorithm are shorter versions of those found by the R algorithm. For example, our algorithm did 

not report the rule 36, 48 → 38, because it reported rule 36 → 38, which is a shorter version of 

the rule. 

 

Runtimes are immensely different, however, when one approaches non-sparse medical data such 

as the gene/survival data that was tested in [2] with the D-basis algorithm. 

 

We re-tested again the data set treated in [2], with 291 ovarian cancer patients, split into 4 

survival groups, together with expression levels of 40 genes identified as essential for this type of 

cancer by other methods. The goal of analysis is to find a small group of genes, say 5 to 7, that 

may predict the good or bad survival of a patient. The data was converted to the binary format, 

where the first 80 columns represented expression levels of 40 genes, while columns 81 through 

84 marked the survival subgroups of patients. The ranking of 80 columns by the relevance 

parameter to any column b = 81, 82, 83, 84 would provide important information for medical 

specialists, and dependence of survival on identified subgroup of genes could be verified by other 

means such as Kaplan-Meier test [13]. 

 

The D-basis algorithm allows to compute only a sector of the basis, with all the rules X → b with 

particular consequent b. We set b = 81 and computed the b-sector of the D-basis in 135 seconds: 

either 200,000 implications (rules of confidence = 1) of minimum support 3, or just 91 of 

minimum support 5. 

 

For the testing of MRD algorithm, we ran a batch of 25 runs of shorter tables removing randomly 

20 rows at a time, requesting the rules X → 81 of minimum support 5. 

 

Sequential time was 51.11 minutes, with roughly 125 seconds per run. The average confidence of 

the new rules was 0.93, and a total of 219 rules were retrieved. 

 

Thus, together with 91 rules of confidence = 1, we found the set ∆(b) of 310 rules of high 

confidence. Note that no aggregation or relevance computation was performed, because the 

purpose of the test was the comparison with software that does the retrieval of the rules, but not 

the ranking of the attributes. 

 

Note that the density of the medical data matrix is 0.34 (compared to just 0.0162 in transactional 

data), and the rules have a tendency to be long. Among the rules of confidence = 1 there were 35 

rules X → b with |X| = 6 and 7 rules with |X| = 7. Among rules of less confidence, there were 

numerous rules with |X| > 9. 

 

When requesting ’arules’ in R, the program runs with the user’s parameters. In order to reduce the 

time taken for the computation, there is a parameter maxtime, which limits the time used per 

frequent sets of attributes. This parameter stops the program when the time to produce some set 

of rules per subset exceeds expected times of computation.  
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For Apriori to analyze a more dense data set such as the medical data set, it will need to generate 

all frequent sets containing b = 81, 82, 83, 84, but the number of such frequent sets will be much 

larger than the eventual rules with consequent b. This highlights exponential time complexity of 

Apriori vs. the sub-exponential time it would take to analyze the same data set with the D-basis 

algorithm. 

 

Requesting ‘arules’ on the equivalent data for the data set in [2] was unsuccessful due to the 

inordinate memory complexity and time complexity of the algorithm. We had successfully 

analyzed subsets of length 7 before the memory demands were too high. On the same machine 

that ran the D-basis program, Apriori in R ran with minimum support = 5 and maximum length of 

rules = 7 and took 43.67 seconds. 

 

While faster than the D-basis program, the set of rules was restricted, and any attempt to test with 

larger parameters stopped execution due to large memory requirements. These rules were also 

limited in size so that only rules with |X| ≤ 6 were generated. 

 

6. CONCLUSION AND FUTURE WORK 

 
In this paper we have discussed the development of an algorithm for the retrieval of association 

rules in a binary table i.e., a table consisting of ones and zeroes as another representation of the 

data. This is done via dualizing the hypergraph associated with the dataset, then reducing the task 

of rule generation to traversing this associated hypergraph via any sub-exponential time-

complexity algorithm [1]. 

 

Several development proceedings were discussed, including the eventual parallelization of the 

program and a “top-down” method of retrieving rules which hold in all rows of the table except a 

few removed rows. Analyzing a slightly smaller sub-table allows to discover rules which have 

high confidence and may fail in a few rows due to noise in the data. The ability for this code to be 

parallelized and its low theoretical time complexity make it a powerful tool for data mining. 

 

The relevance parameter for determining the importance of one attribute to an outcome was also 

tested to see how it might be used in analyzing real data. It was seen that even random rules could 

produce a notable relevance values, summarized in Fig. 1. Then, a synthetic rule was constructed 

and noise was added to the matrix in order to see what effect noise would have on the relevance 

of the parameters of the constructed rule, and whether or not the process of retrieving rules of 

high confidence via row deletion could recover the synthetic rule if it was blocked. The first part 

of these tests revealed that relevance stayed relatively stable up until approximately 30-40% 

noise, and that depending on the noise and how many rows were removed, the process could 

recover the synthetic rule albeit with less support and confidence. 

 

Lastly, we tested several methods for “ranking” which rows should be deleted in order to recover 

rules lost to noise. One of tested heuristic is based upon analyzing the inverted table, however the 

reason for this heuristic’s efficacy is not yet identified. 

 

The development of this program is still underway, with real implementation of distributed 

computing expected later in 2018. We currently have several data sets in biology, medicine and 

meteorology which we plan to explore, working in collaboration with Biology Department, 
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Geology, Environment and Sustainability Department of Hofstra University,as well as Donald 

and Barbara Zucker School of Hofstra-Northwell. We also plan to continue the collaboration with 

the Cancer Center of University of Hawai’i, and contribute to the exploration of data sets of 

various cancers, which combines several available methods [17]. 
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