

Natarajan Meghanathan et al. (Eds) : NLP, JSE, CST, SIP, ARIA - 2018

pp. 29– 45, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.80204

SEMANTIC STUDIES OF A SYNCHRONOUS

APPROACH TO ACTIVITY RECOGNITION

Ines SARRAY
1
, Annie RESSOUCHE

1
, Sabine MOISAN

1
, Jean-Paul

RIGAULT
1
 and Daniel GAFFE

2

1
Universite´Coˆted’Azur, INRIA, SophiaAntipolis, France

2
Universite´Coˆted’Azur, CNRS, LEAT, SophiaAntipolis, France

ABSTRACT

Many important and critical applications such as surveillance or healthcare require some form

of (human) activity recognition. Activities are usually represented by a series of actions driven

and triggered by events. Recognition systems have to be real time, reactive, correct, complete,

and dependable. These stringent requirements justify the use of formal methods to describe,

analyze, verify, and generate effective recognition systems. Due to the large number of possible

application domains, the researchers aim at building a generic recognition system. They choose

the synchronous approach because it has a well-founded semantics and it ensures determinism

and safe parallel composition. They propose a new language to represent activities as

synchronous automata and they supply it with two complementary formal semantics. First a

behavioral semantics gives a reference definition of program behavior using rewriting rules.

Second, an equational semantics describes the behavior in a constructive way and can be

directly implemented. This paper focuses on the description of these two semantics and their

relation.

KEYWORDS

Activity Recognition, Language, Synchronous Approach, Semantics

1. INTRODUCTION

Activity Recognition aims at recognizing sequences of human actions that follow the predefined

model of an activity. Our research team mainly works on medical applications to help physicians

detect abnormal behaviors or monitor patient activities such as serious games.

Recognition systems must satisfy stringent requirements: dependability, real time, cost effective-

ness, security and safety, correctness, completeness... To enforce most of these properties, the

chosen approach is to base the configuration of the system as well as its execution upon formal

techniques. Therefore, these formal bases should permit static analysis, verification and

validation, but also easy and direct implementation.

The aim is to build a generic recognition system for such activities. The authors chose to model

these activities as synchronous finite automata. The synchronous paradigm ensures determinism

and supports concurrency through parallel composition. In particular, critical races can be

30 Computer Science & Information Technology (CS & IT)

detected by static analysis. This model is also well-founded owing to formal semantics. Thus the

recognition system benefits from the sound foundations of the synchronous approach and from

the automata theory, allowing automatic proofs, static verification, powerful simulation, code

generation, etc.

For the users to describe synchronous automata, languages such as Lustre, Esterel, Scade, and

Signal [1] have been defined. These languages are for expert users. This paper proposes another

language called ADeL (Activity Description Language). Building a complete generic recognition

system involves many different aspects. The paper concentrates on the formal description of

activities as synchronous automata and their mathematical semantics. However, the flavor of all

these different aspects will begiven.

The paper is organized as follows. The next section is a short reminder of the synchronous model

of reactive systems. An overview of the ADeL language is given in section 3. Section 4 is the

core of the paper: it introduces the semantics and the mathematical concepts on which researchers

rely to define and verify the behavior of programs and to compile them. Finally several related

works are presented before concluding.

2. SYNCHRONOUS MODEL OF REACTIVE SYSTEMS

The Synchronous Paradigm relies on a discrete logical time composed of a sequence of logical

instants, defined by the system reactions.

Reactive systems listen to input events coming from the external environment and react to them

by generating output events towards the environment. Such systems can be complex. The

synchronous model is a way to reduce the complexity of behavior description by considering their

evolution along successive discrete instants. An instant starts when some input events are

available. The output and internal events deriving from these inputs are computed until stability

(fixed point) is achieved; the instant finishes by delivering the output events to the environment.

No inputs occurring “during” the instant are considered. Hence, instants are atomic, their

sequence defines a logical time. In this model, instants take “no time” with respect to the logical

time they define.

The synchronous paradigm is interesting because it ensures determinism and it supports

concurrency through deterministic parallel composition. In particular, critical races are detected

by static analysis. It supports a true notion of simultaneous events and provides not only a

reaction to the presence of an event but also to its absence (to some extent). This model is also

well-founded owing to formal semantics. Moreover, along the last decades, tool sets for

simulation, verification, and code generation of synchronous automata have been developed.

The synchronous model has been applied to several different systems, from hardware design [2]

to embedded real time systems [3]. In this work, the team proposes to apply it to another real time

system, namely human activity recognition. Synchronous models can be represented as Mealy

machines. The Mealy machines that they consider are 6-uples of the form: <Q, qinit, I, O, λ, τ >,

where Q is a finite set of states, qinit ∈ Q is the initial state, I (resp. O)is a finite set of input (resp.

output) events; λ: (Q × I) → Q is the transition function and τ : (Q × I) → O is the output function.

This is an explicit representation of Mealy machines as automata. Mealy himself introduced

Computer Science & Information Technology (CS & IT) 31

another representation as Boolean equation systems that calculate both the output event values

and the next state from the input event values and the current state [4]. The authors call this

representation “implicit” Mealy machines.

Synchronous languages such as Lustre, Esterel, Scade, and Signal[1] have been defined to

describe synchronous automata. These languages are for expert users. This paper proposes

another synchronous language that is easier to understand and to work with for non-computer

scientists (e.g., doctors). To improve its acceptance and its ease of use by non-computer scientists,

the authors are working in collaboration with ergonomists and doctors from Claude Pompidou

hospital. This language is called ADeL (Activity Description Language) and is described in the

next section.

3. ACTIVITY DESCRIPTION LANGUAGE (ADEL)

ADeL provides two different (and equivalent) formats: graphical and textual. It is a modular and

hierarchical language, which means that an activity may contain one or more sub-activities. The

description of an activity consists of several parts: first the user defines the participants in the

activity, their types, their roles, as well as the initial state of the activity. Second, the user

describes the expected behavior using a set of control operators detailed in table 1. These

operators are the base of the ADeL language. They have a synchronous semantics and they deal

with events coming from their environment.

Table1.ADeL operators. S, S1 are events (received or emitted);p, p1 and p2 are instructions; condition is

either an event or a Boolean combination of event presence/absence

nothing does nothing and terminates instantaneously.

[wait] S waits for event S and suspends the execution of the activity

until

S is present. Operator wait can be implicit or explicit.

p1 then p2 starts when p1 starts; p2 starts when p1 ends; the sequence

terminates when p2 does.

p1 parallel p2 starts when p1 or p2 start; ends when both have terminated.

p1 during p2 p1 starts only after p2 start and must finish before p2end.

while condition {p} p is executed only if the condition is verified. When p ends,

the

loop restarts until the condition holds.

stop {p} when S [alert S1] executes p to termination as long as S is absent, otherwise

when

S is present, aborts p, sends an alert S1, and terminates

if condition then p1[else p2] executes p1 if condition holds, otherwise executes p2.

32 Computer Science & Information Technology (CS & IT)

p timeout S {p1}[alert S1] executes p ; stops if S occurs before p terminates

and possibly sends alert S1; otherwise executes p1when

p has terminated.

alert S raises an alert.

Local (events){p} declares internal events to communicate between sub parts

of p.

Call (activity) calls a sub-activity.

Some of these operators are “instantaneous” (nothing, alert) while others take at least one

(synchronous) instant to process.

Compared to other synchronous languages where it is difficult or even impossible to treat the real

clock time, ADeL can manipulate it thanks to the operator ”timeout”. For example, deadlines

are expressed as follows: P timeout S {P1} (S is a timed signal). To compare with a classical

approach, in Esterel, this operator should be written as:

abort{p} when S;

presentS then alert else P1;

This part of Esterel code seems easy for a programmer but it is not the case for non-computer

scientists such as doctors. Indeed, it would be even more difficult to write this kind of code in a

declarative synchronous language like Lustre. Moreover, it is more complex to use these

languages to express the ”during” operator.

The main issue of the synchronous paradigm is that the world is not synchronous in general. Thus

it requires to transform asynchronous physical flows of events into a succession of discrete

instants. The authors propose a synchronous transformer, called Synchronizer. The Synchronizer

receives asynchronous events from the environment, filters them, decides which ones may be

considered as “simultaneous”, and groups them into a logical instant according to predefined

policies. In general, no exact simultaneity decision algorithm exists but several empirical

strategies may be used for determining instant boundaries, relying on event frequency, event

occurrence, elapsed time, etc. To manage the real clock time, the Synchronizer considers the

clock time as an event like others.

4. ADEL SEMANTICS AND COMPILATION

To provide the language with sound foundations, the authors turn to a formal semantic approach.

First, logical rewriting rules are a classical and rather natural way to formally express the intuitive

semantics. This form of behavioral semantics gives an abstract description of a program behavior

and facilitates its analysis. However, it is not convenient as an implementation basis nor suitable

for proofs (e.g., model-checking). Hence, an equational semantics, which maps an ADeL

program to a Boolean equation system representing its finite state machine, was also defined. The

ADeL compiler can easily translates this equation system into an efficient code. Using such a

double semantics is somewhat traditional in the synchronous language area[5].

Computer Science & Information Technology (CS & IT)

Since there are two different semantics, it is mandatory to establish their relationship. In fact the

authors proved that the execution of a program based on the equational semantics also conforms

to the behavioral semantics (see4.4).

4.1 Mathematical Context

One of the bases of ADeL semantics is the notion of an

events. Environments record the status of events in each synchronous instant and the goal of the

ADeL semantics is to compute the status of the output events for each reaction of a

A 4-valued algebra (ξ = {⊥, 0,

the event is not yet determined, 0 that the event is absent, 1 that the event is present, and

the status of the event is over determined (error). Usually

two incompatible status in the same instant (e.g., 0 and 1 in different parts of the program).

Previously, synchronous language semantics expressed the status of events using 3

algebras. Indeed, such semantics either cannot reflect how the information about event status

grows when the algebra is a lattice (0

instant when the algebra is a complete partial order (c.p.o) (

the beginning of the computation of event status, all unkno

as an event is present in a part of the program, its status grows to 1, otherwise it is set to 0. This

way prevents any incremental compilation of activities.

knowledge of event status of a sub

in a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1

when the already compiled sub program is included in the main one, because 1 and 0 are

incomparable with respect to the c.p.o order and

consider a 4-valued algebra and a structure which allows us to rely on the semantics rules to

compile programs in an incremental

means to compile activities.

As a consequence, the authors supply

structures having two distinct orders denoted

¬ operation, such that both (

In ξ, ≤B represents an extension of the usual Boolean order and

information about the presence of an event. These two orders are defined as follows:

⊥ ≤ K1 ≤K T; 0 ≤B ⊥ ≤B 1; 0 ≤B T

semantics: the Boolean order is a means to calculate the event status while the knowledge order

reflects the growth of information about event status when computing the equation system. As a

consequence, four operations in

“join” operations of (ξ, ≤B) and

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of

role with respect to ≤K has to be transparent: actually, no more nor less information about

¬x is known, then the authors give the

¬ T = T, and ¬ ⊥ = ⊥.

Another important feature of our approach is the ability to encode

Boolean ones. There exist several possible encoding functions and the researcher

which is compatible with the ≤K order:

Computer Science & Information Technology (CS & IT)

Since there are two different semantics, it is mandatory to establish their relationship. In fact the

oved that the execution of a program based on the equational semantics also conforms

to the behavioral semantics (see4.4).

One of the bases of ADeL semantics is the notion of an environment, which is a finite set of

onments record the status of events in each synchronous instant and the goal of the

ADeL semantics is to compute the status of the output events for each reaction of a

, 1, T}) is used to represent the status: ⊥ means that the status of

the event is not yet determined, 0 that the event is absent, 1 that the event is present, and

r determined (error). Usually T Occurs because the event would

same instant (e.g., 0 and 1 in different parts of the program).

Previously, synchronous language semantics expressed the status of events using 3

algebras. Indeed, such semantics either cannot reflect how the information about event status

hen the algebra is a lattice (0 ≤ ⊥ ≤ 1), or fix the status of each event to 0 or 1 in each

instant when the algebra is a complete partial order (c.p.o) (⊥ ≤ 0, ⊥ ≤ 1)[6]. In this latter case, at

the beginning of the computation of event status, all unknown status are set to ⊥. Then, as soon

as an event is present in a part of the program, its status grows to 1, otherwise it is set to 0. This

way prevents any incremental compilation of activities. To compile a main activity without the

sub activity, these latter must be kept to ⊥.An event

a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1

when the already compiled sub program is included in the main one, because 1 and 0 are

incomparable with respect to the c.p.o order and have no upper bound. It is why the authors

valued algebra and a structure which allows us to rely on the semantics rules to

compile programs in an incremental way. Moreover, this algebra provides us with a convenient

As a consequence, the authors supply ξ with a bilattice structure [7]. Bilattices are mathematical

structures having two distinct orders denoted ≤B (Boolean order) and ≤K (knowledge order)

(ξ, ≤B) and (ξ, ≤K) are lattices for their respective orders.

represents an extension of the usual Boolean order and ≤K expresses the level of

information about the presence of an event. These two orders are defined as follows:

T ≤B 1. These two orders play complementary roles in the ADeL

semantics: the Boolean order is a means to calculate the event status while the knowledge order

reflects the growth of information about event status when computing the equation system. As a

consequence, four operations in ξ have been introduced: and are respectively the “meet” and

 and play the same roles for (ξ, ≤K).

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of

be transparent: actually, no more nor less information about

is known, then the authors give the following definitions for this ¬ operator: ¬ 1 = 0, ¬ 0 = 1,

Another important feature of our approach is the ability to encode ξ elements into pairs of

Boolean ones. There exist several possible encoding functions and the researcher

order:

 33

Since there are two different semantics, it is mandatory to establish their relationship. In fact the

oved that the execution of a program based on the equational semantics also conforms

, which is a finite set of

onments record the status of events in each synchronous instant and the goal of the

ADeL semantics is to compute the status of the output events for each reaction of a program.

means that the status of

the event is not yet determined, 0 that the event is absent, 1 that the event is present, and T that

ccurs because the event would have

same instant (e.g., 0 and 1 in different parts of the program).

Previously, synchronous language semantics expressed the status of events using 3-valued

algebras. Indeed, such semantics either cannot reflect how the information about event status

 1), or fix the status of each event to 0 or 1 in each

 1)[6]. In this latter case, at

. Then, as soon

as an event is present in a part of the program, its status grows to 1, otherwise it is set to 0. This

compile a main activity without the

 never present

a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1

when the already compiled sub program is included in the main one, because 1 and 0 are

It is why the authors

valued algebra and a structure which allows us to rely on the semantics rules to

Moreover, this algebra provides us with a convenient

with a bilattice structure [7]. Bilattices are mathematical

(knowledge order) and a

) are lattices for their respective orders.

expresses the level of

information about the presence of an event. These two orders are defined as follows: ⊥ ≤K 0 ≤K T;

1. These two orders play complementary roles in the ADeL

semantics: the Boolean order is a means to calculate the event status while the knowledge order

reflects the growth of information about event status when computing the equation system. As a

are respectively the “meet” and

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of view, but its

be transparent: actually, no more nor less information about x and

following definitions for this ¬ operator: ¬ 1 = 0, ¬ 0 = 1,

elements into pairs of

Boolean ones. There exist several possible encoding functions and the researchers choose one

34 Computer Science & Information Technology (CS & IT)

Here is the usual Boolean algebra {f f, tt}.

This encoding function extends to the ξ operators. The structure (, ≤) is a complete lattice

for the ff ≤ tt order. Then, the structure: defined as follows:

is a bilattice and the following theorem holds:

Theorem 1 (ξ, ≤B, ≤K, ¬) and are isomorphic.

To justify this theorem, the authors show that the encoding e previously defined is an

isomorphism between (ξ, ≤B, ≤K, ¬) and Indeed, the four binary operations and the

negation one of the (ξ, ≤B, ≤K, ¬) bilattice are preserved in The proof is detailed in [8].

As a result of the theorem, the encoding e previously defined for ξ elements can be extended to

the operators of the bilattice (ξ, ≤B, ≤K, ¬)
1
:

Thus, one can efficiently convert ξ-equation systems into the Boolean universe.

4.1.0.1 Extension to Environments

Owing to the ξ algebra, it is now possible to formally introduce the notion of environments.

Environments are finite sets of events where each event has a single status.

1
In the following equations, + and .denote the join and meet operations of the lattice (B, ≤))

Computer Science & Information Technology (CS & IT) 35

More formally, consider a finite set of events S = {S0, S1, ...Sn, ...}. A valuation is a

function that maps an event to a status value in ξ. Each valuation defines an

environment : The goal of the semantics is to refine the

status of the events of a program in each instant from ⊥ to T according to the knowledge order

(≤K).

Then, for each instruction p, built with ADeL operators, let us denote the finite set of its

events and E(p) the set of all possible environments built from .Operations in (ξ, ≤B, ≤K,¬)

can be extended to environments
2
:

The order relation on environments is defined as follows:

4.2 Behavioral Semantics

Behavioral semantics is a classical and formal way to describe behaviors in an axiomatic way.

This semantics formalizes each reaction of a program by computing the output environment from

the input one. To this aim, it defines a set of rewriting rules of the form:
', 'E term

E
p p→

where p and p’ are two instructions of ADeL, 'p is the derivative of p, i.e. the new instruction

that will react to the next input environment. E is the input environment, 'E is the resulting

output environment, and term is a Boolean flag which describes the termination of p, and which

turns to true when p terminates. The rewriting rules of the whole program apply from the root

instruction, structurally following the syntactic tree of the program.

2
Only the operations needed to define both semantics are introduced. However, the five operators of ξ can

be similarly extended.

36 Computer Science & Information Technology (CS & IT)

Due to lack of space, the behavioral semantics of all the operators cannot be described. Only the

rules for two operators are presented: parallel which is specific to synchronous languages and

timeout that takes into consideration the synchronous time. Nevertheless, a complete description

is detailed in[10].

4.2.0.1 Operator parallel.

Operator parallel has two argument instructions that are executed and computed concurrently,

possibly broadcasting events between them. Thus the evolution of both instructions can have an

impact on both environments. The operator ends when the two instructions terminate, i.e. when

termp1 and termp2 become true, and the resulting output environment is the unification of the

respective resulting environments computed for p1 and p2.

 (1)

4.2.0.2 Operator timeout.

The behavior of: p timeout S{p1} alert S1 depends both on the behavior of its instruction p and

on the status of S. If S is not present and p terminates, p1 starts and the behavior of the operator

turns out to be the behavior of p1 (rule2).

 (2)

If S is present (i.e., timeout elapsed), the computation of the operator stops the execution of p and

finishes by generating nothing as final result and changing termp to true. The final environment

is the output environment E, where the status of the event S1 becomes true (rule3).

 (3)

The behavioral semantics is a “macro” step semantics that gives the meaning of a reaction for

each ADeL instruction. Nevertheless, a reaction is the least fixed point of a “micro” step

semantics [6] that computes the output environment from the input one. As mentioned in

subsection 2, for each instruction p, each monotonic increasing function from has a

least fixed point which defines the semantics of the program of which p is the root instruction.

More precisely,
', 'E term

E
p p→ represents a sequence of micro steps such that:

Computer Science & Information Technology (CS & IT)

1 1 2 2, ,E term E term

E E E
p p p p p p→ → →

and where, at each step, Ei+1 = F(

calculate the output environment from the input one). Since the

operator on environments, they are monotonic and increasing with respect to the

∀i, Ei+1 F (Ei) and 'E is the least fixed point of the

The behavioral semantics is a logical one based on

usable to build compilers because it requires the non

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must

conform to it.

To get an efficient means to compile programs, the authors introduced another semantics based

on constructive Boolean logic. Hence, this second semantics is also constructive: one can deduce

the status of events by propagating the status of input events instead

4.3 Equational Semantics

Equational semantics allows us to make an incremental compilation of the ADeL programs

by translating each root instruction of programs into a

system is definedasthe4-tuple

events, Rare the registers, i.e specific

compute the next instant, and D

of each event.

Computer Science & Information Technology (CS & IT)

1 11 1 2 2

1

,, ,

1 1 2, ,..., 'n n

n

E termE term E term

nE E E
p p p p p p+ +→ → →

(Ei) (F represents the application of one of the semantic rules

calculate the output environment from the input one). Since the F functions rely on the

operator on environments, they are monotonic and increasing with respect to the

is the least fixed point of the F
n
function application.

The behavioral semantics is a logical one based on rewriting rules. However, it cannot be really

usable to build compilers because it requires the non-trivial computation of fixed points.

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must

t an efficient means to compile programs, the authors introduced another semantics based

Boolean logic. Hence, this second semantics is also constructive: one can deduce

the status of events by propagating the status of input events instead of computing fixed points[6].

Equational semantics allows us to make an incremental compilation of the ADeL programs

by translating each root instruction of programs into a ξ-equation system. An equation

 <I,O,R,D> where I are the input events, O are

specific variables acting as memories to record values

D is the definition of the equation system to calculate

 37

of one of the semantic rules to

functions rely on the

 order. Then

rewriting rules. However, it cannot be really

trivial computation of fixed points.

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must

t an efficient means to compile programs, the authors introduced another semantics based

Boolean logic. Hence, this second semantics is also constructive: one can deduce

of computing fixed points[6].

Equational semantics allows us to make an incremental compilation of the ADeL programs

equation system. An equation

are the output

values useful to

calculate the status

38 Computer Science & Information Technology (CS & IT)

is deduced from semantic rules expressed for each operators of the language. To define these

rules, three specific events are defined for each operator: START to start the instruction, KILL to

kill the instruction, and FINISH to send the termination information to the enclosing instruction.

The operator equation systems are defined by operator semantic rules to compute the status of the

FINISH, output, and local events, according to the status of START, KILL, input and local

events.

As example, here follows the equational semantics of the two operators already considered in

section 4.2.

4.3.0.1 Operator parallel

Operator parallel unifies (operation) the output environments of its two operands. The output

environment is computed according to the following rule:

The rule to define (see Fig. 1) introduces two registers R1 and R2to memorize the

respective statuses of the FINISH events of the two parallel arguments, since this operator ends

when both of its two operands have finished their execution
3
. Note that the operands do not in

general terminate in the same instant.

4.3.0.2 Operator timeout.

The output environment of p timeout S{p1} alert S1 is calculated as follows:

The

equation system (see Fig. 2) contains also two registers to record the way

this instruction terminates: either with the normal termination of its argument (p) or when the

timeout event becomes true. To express the rule for timeout operator, the same rules to denote

events as in the previous operator are used.

3
In operator parallel equation system, the specific signals of the considered operator(here parallel) are

denotedSTART, KILL and FINISH while the specific signals of the arguments p1 and p2 are indexed with

the argument respective name.

Computer Science & Information Technology (CS & IT) 39

Figure 1.Equational semantics of parallel operator.

Figure 2.Equational semantics of timeout operator.

4.4 Relation between Behavioral and Equational Semantics

The behavioral semantics gives a meaning to each program: for each ADeL operator, it formally

defines the computation of the output environment and of a Boolean termination flag. The

equational semantics, by associating a ξ-equation system to each operator, provides a constructive

way to perform the computation. It is important to establish the relation between the solutions

obtained by both semantics. To this aim, the following theorem has been proved:

40 Computer Science & Information Technology (CS & IT)

Theorem 2 Let p be an ADeL instruction, O a set of output events and E an input environment. If

E
p〈 〉 is the resulting environment computed by the equational semantics, then the following

property holds: 'p∃ such that
', 'FINISHPE

E
p p→ and ∀o ∈O, o has the same status in

E
p〈 〉 and 'E .

In short, the theorem means that if the equational semantics yields a solution, there exists also a

behavioral solution with the same outputs. It is a proof by induction on the size of a program

where the size of an instruction is roughly speaking the number of nodes in its syntax tree. The

proof is detailed in[10].

4.5 Compilation and Validation

To compile an ADeL program, our system first transforms it into an equation system which rep-

resents the synchronous automaton as explained in section 2. Then it implements directly this

equation system, transforming it into a Boolean equation system thanks to the encoding defined

in section 2 and to theorem 1. The latter system provides an effective implementation of the

initial ADeL program.

Since the equations may not be independent, a valid order (compatible with their inter-

dependencies) is needed to be able to generate code for execution (recognition automata),

simulation, and verification. Thus an efficient sorting algorithm has been defined [11], using a

critical path scheduling approach, which computes all the valid partial orders instead of one

unique total order. This facilitates merging several equation systems, hence, an incremental

compilation can be performed: an already compiled and sorted code for a sub-activity can be

included into a main one, without recompiling the latter.

The internal representation as Boolean equation systems also makes it possible to verify and

validate ADeL programs, by generating a format suitable for a dedicated model checker such as

our own BLIF CHECK
4
. The same internal representation also allows us to generate code for the

off-the-shelf NuSMV model-checker
5
.

4.5.0.1 Use Case.

To illustrate our purpose, a small use case in the domain of healthcare is detailed. The goal is to

monitor the drug treatment of an Alzheimer person. The activity medicine To Take must check

that the person is near a table, takes a glass, eats some drugs, and drinks. If the person does not

drink before 2 minutes, a danger event is sent.

In the graphical format, users declare roles of actors in the declaration window of the graphical

tool. Then, they declare sub-activities, and describe the steps of their activity along a ”timelined

organigram” (see Fig. 3).

4
http://www.unice.fr/dgaffe/recherche/outils blif.html

5
http://nusmv.fbk.eu/

Computer Science & Information Technology (CS & IT) 41

Figure 3. Graphical format of the activity description (organigram)

In the textual format of ADeL, users first declare types of actors. For this use case, there are 2

types: a Zone, a Person, and Equipment. Then, they have to assign roles to actors: in our case, a

patient(Person), a medicine, a glass, a TV(Equipment) are needed. The declaration is as follows:

Type Person, Equipment;

Activity medicineToTake :

Roles

patient:Person;

medicine:Equipment;

glass: Equipment;

TV:Equipment;

After that, users define the name of the activity, its expected events and sub-activities:

SubActivities

next_to_table(Person);

take(Person, Equipment);

eat(Person,Equipment);

watch(Person,Equipment);

drink(Person); sleep(Person);

42 Computer Science & Information Technology (CS & IT)

Finally, they describe the activity by defining the initial state, and by combining the sub-activities

using operators of the language.

InitialState:inside_Zone(Patient);

start

{

next_to_table(patient)

then

eat(patient,medicine) parallel take(patient, glass)

then

drink(patient) timeout 2.0 minutes

{ watch(patient,TV)then alert (danger)

then

sleep(patient)

}

End

This code is not correct because the alert should be sent went the timeout is reached. To prove

that the alert works correctly, the medicine To Take activity is compiled and the input code for the

NuSMVmodel-checkerisgenerated.ThentheLTLtemporalpropertycanbechecked: if danger is

true then cond_timeout_2_minutes must have been previously true (“danger ⇒O

cond_timeout_2_minutes”)
6
.

The property is false and a generated counter example allows to fix the problem. Hence, the

correct body of the program is:
start

{

next_to_table(patient)

then

eat(patient,medicine) parallel take(patient, glass)

then

drink(patient) timeout 2.0 minutes

{

watch(patient,TV) then sleep(patient)

}alert(danger)

end

Now the property holds.

5. RELATED WORK

Synchronous languages such as Esterel [1] are meant to describe reactive systems in general and

thus can be used to describe human activities. These languages and ADeL use a logical time

which means that the recognition is performed only when something meaningful occurs.

Although their syntax is rather simple, their large spectrum makes them difficult to master by

6
cond_timeout_2_minutes is a Boolean variable true when the timeout is over

Computer Science & Information Technology (CS & IT) 43

some end users. Being dedicated to activity description, a language like ADeL appears more

”natural” for its end users. All these synchronous languages have been given formal semantics.

For instance, Esterel has several semantics, with different purposes. In particular, one of these

semantics provides a direct implementation under the form of “circuits”. ADeL adopts a similar

approach but it simplifies some operators whose semantics in Esterel is complex.

Message Sequence charts [12, 13], which are now introduced in UML, and Live Sequence Charts

[14] are also specification languages for activities with a graphical layout that immediately gives

an intuitive understanding of the intended system behavior. These languages may be given formal

semantics liable to analysis. Message Sequence Charts (MSC) graphically represent the messages

exchanged among the actors along time. It is possible to model a complex activity involving

several different activities (i.e., MSCs) using High-level Message Sequence Charts (HMSCs).

The HMSCs support also parallel composition. The MSC operators and the hierarchical

composition of HMSCs are similar to our approach. However, [15] reveals “pathologies” in

MSCs, due to defective MSC specifications. These pathologies mainly affect synchronization

issues. For instance races may arise from discrepancies between the order of graphical description

and system causalities. In our case, since the Synchronous Paradigm is meant to avoid these

synchronization problems, race conditions are detected and the program is rejected at compile

time. Another pathology comes from possible ambiguous choices between events. In the

Synchronous approach, this kind of problems is avoided by producing deterministic systems, in

particular mastering event simultaneity. MSCs address the pathology problems by using model

checking and formal verification. In [13], the authors illustrate problems of the MSCs models

verification for synchronous and asynchronous interpretations and suggest different techniques to

fix these model checking problems in several kinds of MSCs representations. In our case, even

though model checkers may be interfaced, it is not mandatory. Indeed, most of these pathologies

are compile-time checked.

Live Sequence Charts (LSCs) [14] is another activity-based specification and modeling language.

It is an extension of MSCs, more expressive and semantically richer. Similarly to ADeL, LSCs

are used to specify the behavior of either sequential or parallel systems. They have a formal

semantics and can be transformed to automataas ADeL. This allows analysis, verification, and

testing using depth-first search methods. Model checking of LSCs is possible by translating them

into temporal logic, but the size of the resulting formula, even for simple LSCs, makes it difficult.

However, [16] proposes a more efficient translation, but only for a class of LSCs.

Many works in video understanding address the difficult task of extracting semantically

significant objects and events from sequences of pixel-based images. A good survey of the

corresponding techniques is presented in Lavee and all [17]. These techniques are based on well-

founded mathematical methods such as hidden Markov models, (dynamic) Bayesian networks,

finite state machines, Petri nets, constraint satisfaction, etc. The authors rely on tool based on

such techniques to obtain reliable input events. These approaches allow a form of activity

recognition (namely “composite events”) but ADeL addresses more complex activities with

longer duration and involving variants, parallel behaviors and multiple actors. Moreover it

loses the dependency on video sensors and proposes a more generic approach.

In [18], authors propose a natural and intuitive language to describe activity models using actors,

sub activities, and a set of constraints. They also introduce a temporal constraint resolution

techniques to recognize activities in real time. This approach is only dedicated to recognize

activities using video interpretation, while the authors in this work aims to develop a generic

44 Computer Science & Information Technology (CS & IT)

approach that can be used in a large range of domains, by accepting basic events that can come

not only from video interpretations but also from other sensors. On the other hand, as authors are

working with video interpretation in real time, they can receive the same events (the same image

frame) for a long lapse of time without any changements which makes the system awake and

working for nothing. With the synchronous approach, the notion of logical time makes the system

work only when it receives a significant event.

Researchers in [19] work in activity recognition in smart houses to provide Activities of Daily

Living (ADL) and Instrumental Activities of Daily Living (IADL) assistance for their users. They

have developed a generic conceptual activity model which allows the modeling of simple and

composite activities. To this aim, they propose an hybrid approach which combines ontological

formalisms, which describes the link between the activities and their entities, and temporal

knowledge representations which specify the relationships between sub-activities that form the

composite activity. Then, they encode their characteristics and forms. In our case, ontologies are

not used, the ADeL language has only semantics which help to generate the needed activity

model to recognize simple and complex activities. Actually, a basic activity can be represented

as an event or a simple activity. Activity models for complex/composite activities can be created

by composing the sub-activity models which constitute them.

6. CONCLUSION AND PERSPECTIVES

This paper presents a formalization of a synchronous approach to describe (human) activities and

to generate a computer recognition system. The Synchronous Paradigm offers several advantages

in terms of expression power, ease of implementation, verification through model checking, etc.

The authors endowed their own activity description language (ADeL) with two complementary

formal semantics, one to describe the abstract behavior of a program, the second to compile the

program into an automaton described as an equation system. They proved a theorem which

establishes a consistency relation between these two semantics.

The first tests show that the current code that ADeL generates, basically composed of Boolean

equations, is easy to integrate in a recognition system, produces compact code, and is efficient at

run time. There remains a fundamental issue, common to all synchronous approaches: at the

sensor level, the events are asynchronous and they must be sampled to constitute input

environments and to define the synchronous “instants”. No exact solution is available; several

strategies and heuristics have been already tested but large scale experiments are still necessary.

Based on formal foundations, work remains to be done to complete a full framework to generate

generic recognition systems and automatic tools to interface with static and dynamic analysis

tools, such as model checkers or performance monitors.

REFERENCES

[1] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic,1993.

[2] Ge´rard Berry. Mechanized reasoning and hardware design. chapter Esterel on Hardware, pages 87–

104. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,1992.

[3] Esterel Technologies. Scade suite. http://www.ansys.com/products/embedded- software/ansys-scade-

suite.

Computer Science & Information Technology (CS & IT) 45

[4] G. H. Mealy. A method for synthesizing sequential circuits. Bell Sys. Tech. Journal, 34:1045– 1080,

September1955.

[5] G. Berry. The Foundations of Esterel. In G. Plotkin, C. Stearling, and M.Tofte, editors, Proof,

Language, and Interaction, Essays in Honor of Robin Milner.MIT Press, 2000.

[6] G. Berry. The Constructive Semantics of Pure Esterel. Draft Book, available at: http://www.esterel-

technologies.com 1996.

[7] Matthew Ginsberg. Multivalued logics: A uniform approach to inference in artificial intelligence.

Computational Intelligence, 4:265–316,1988.

[8] Daniel Gaffe´ and Annie Ressouche. Algebraic Framework for Synchronous Language Semantics. In

Laviana Ferariu and Alina Patelli, editors, 2013 Symposium on Theoretical Aspects of Sofware

Engineering, pages 51–58, Birmingham, UK, July 2013. IEEE Computer Society.

[9] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

5(2):285–309,1955.

[10] Ines Sarray, Annie Ressouche, Sabine Moisan, Jean-Paul Rigault, and Daniel Gaffe´. Synchronous

Automata For Activity Recognition. Research report, Inria Sophia Antipolis, April 2017.

[11] Annie Ressouche and Daniel Gaffe´. Compilation modulaire d’un langage synchrone. Revue des

sciences et technologies de l’information, se´rie The´orie et Science Informatique, 4(30):441–471,

June2011.

[12] Thomas Gazagnaire, Blaise Genest ,Lo¨ıc He´loue¨t, P .S. Thiagarajan, Shaofa Yang, and Vasco T.

Vasconcelos. Causal Message Sequence Charts, pages 166–180. Springer Berlin Heidelberg, Berlin,

Heidelberg,2007.

[13] Rajeev Alur and Mihalis Yannakakis. Model Checking of Message Sequence Charts, pages 114–129.

Berlin, Heidelberg,1999.

[14] L. Li, H. Gao, and T. Shan. An executable model and testing for Web software based on Live

Sequence Charts. In 2016 IEEE/ACIS 15th International Conference on Computer and Information

Science (ICIS), pages 1–6, June2016.

[15] Haitao Dan, Robert M. Hierons, and Steve Counsell. A framework for pathologies of Mes- sage

Sequence Charts. Inf. Softw. Technol., 54(11):1283–1295, nov2012.

[16] Rahul Kumar, Eric G. Mercer, and Annette Bunker. Improving translation of Live Sequence Charts to

temporal logic. Electron. Notes Theor. Comput. Sci., 250(1):137–152, September 2009.

[17] G. Lavee, E. Rivlin, and M. Rudzsky. Understanding video events: A survey of methods for

automatic interpretation of semantic occurrences in video. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 39(5):489–504, Sept 2009.

[18] Van-ThinhVu, Francois Bremond, and Monique Thonnat. Automatic video interpretation: A novel

algorithm for temporal scenario recognition. In Proceedings of the 18th International Joint

Conference on Artificial Intelligence, IJCAI’03, pages 1295–1300, San Francisco, CA, USA, 2003.

Morgan Kaufmann Publishers Inc.

[19] George Okeyo, Liming Chen, and Hui Wang. Combining ontological and temporal formalisms for

composite activity modelling and recognition in smart homes. Future Generation Computer Systems,

39:29 – 43, 2014. Special Issue on Ubiquitous Computing and Future Communication Systems.

