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ABSTRACT 
 

Many important and critical applications such as surveillance or healthcare require some form 

of (human) activity recognition. Activities are usually represented by a series of actions driven 

and triggered by events. Recognition systems have to be real time, reactive, correct, complete, 

and dependable. These stringent requirements justify the use of formal methods to describe, 

analyze, verify, and generate effective recognition systems. Due to the large number of possible 

application domains, the researchers aim at building a generic recognition system. They choose 

the synchronous approach because it has a well-founded semantics and it ensures determinism 

and safe parallel composition. They propose a new language to represent activities as 

synchronous automata and they supply it with two complementary formal semantics. First a 

behavioral semantics gives a reference definition of program behavior using rewriting rules. 

Second, an equational semantics describes the behavior in a constructive way and can be 

directly implemented. This paper focuses on the description of these two semantics and their 

relation. 
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1. INTRODUCTION 
 

Activity Recognition aims at recognizing sequences of human actions that follow the predefined 

model of an activity. Our research team mainly works on medical applications to help physicians 

detect abnormal behaviors or monitor patient activities such as serious games. 

 

Recognition systems must satisfy stringent requirements: dependability, real time, cost effective- 

ness, security  and  safety,  correctness,  completeness... To enforce  most of these properties, the  

chosen approach is to base the configuration of the system as well as its execution upon formal 

techniques. Therefore, these formal bases should permit static analysis, verification and 

validation, but also easy and direct implementation. 

 

The aim is to build a generic recognition system for such activities. The authors chose to model 

these activities as synchronous finite automata. The synchronous paradigm ensures determinism 

and supports concurrency through parallel composition. In particular, critical races can be 
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detected by static analysis. This model is also well-founded owing to formal semantics. Thus the 

recognition system benefits from the sound foundations of the synchronous approach and from 

the automata theory, allowing automatic proofs, static verification, powerful simulation, code 

generation, etc. 

 

For the users to describe synchronous automata, languages such as Lustre, Esterel, Scade, and   

Signal [1] have been defined. These languages are for expert users. This paper proposes another 

language called ADeL (Activity Description Language). Building a complete generic recognition 

system involves many different aspects. The paper concentrates on the formal description of 

activities as synchronous automata and their mathematical semantics. However, the flavor of all 

these different aspects will begiven. 

 

The paper is organized as follows.  The next section is a short reminder of the synchronous model   

of reactive systems. An overview of the ADeL language is given in section 3.  Section 4 is the 

core of the paper: it introduces the semantics and the mathematical concepts on which researchers 

rely to define and verify the behavior of programs and to compile them. Finally several related 

works are presented before concluding. 

 

2. SYNCHRONOUS MODEL OF REACTIVE SYSTEMS 

 
The Synchronous Paradigm relies on a discrete logical time composed of a sequence of logical 

instants, defined by the system reactions. 

 

Reactive systems listen to input events coming from the external environment and react to them 

by generating output events towards the environment. Such systems can be complex. The 

synchronous model is a way to reduce the complexity of behavior description by considering their 

evolution along successive discrete instants. An instant starts when some input events are 

available. The output and internal events deriving from these inputs are computed until stability 

(fixed point) is achieved; the instant finishes by delivering the output events to the environment.  

 

No inputs occurring “during” the instant are considered. Hence, instants are atomic, their 

sequence defines a logical time. In this model, instants take “no time” with respect to the logical 

time they define. 

 

The synchronous paradigm is interesting because it ensures determinism and it supports 

concurrency through deterministic parallel composition. In particular, critical races are detected 

by static analysis. It supports a true notion of simultaneous events and provides not only a 

reaction to the presence of an event but also to its absence (to some extent).  This model is also 

well-founded owing to formal semantics. Moreover, along the last decades, tool sets for 

simulation, verification, and code generation of synchronous automata have been developed. 

 

The synchronous model has been applied to several different systems, from hardware design [2] 

to embedded real time systems [3]. In this work, the team proposes to apply it to another real time 

system, namely human activity recognition. Synchronous models can be represented as Mealy 

machines. The Mealy machines that they consider are 6-uples of the form: <Q, qinit, I, O, λ, τ >, 

where Q is a finite set of states, qinit ∈ Q is the initial state, I (resp. O)is a finite set of input (resp. 

output) events; λ: (Q × I) → Q is the transition function and τ : (Q × I) → O is the output function. 

This is an explicit representation of Mealy machines as automata. Mealy himself introduced 
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another representation as Boolean equation systems that calculate both the output event values 

and the next state from the input event values and the current state [4]. The authors call this 

representation “implicit” Mealy machines. 

 

Synchronous languages such as Lustre, Esterel, Scade, and Signal[1] have been defined to 

describe synchronous automata. These languages are for expert users. This paper proposes 

another synchronous language that is easier to understand and to work with for non-computer 

scientists (e.g., doctors). To improve its acceptance and its ease of use by non-computer scientists, 

the authors are working in collaboration with ergonomists and doctors from Claude Pompidou 

hospital. This language is called ADeL (Activity Description Language) and is described in the 

next section. 

 

3. ACTIVITY DESCRIPTION LANGUAGE (ADEL) 
 

ADeL provides two different (and equivalent) formats:  graphical and textual. It is a modular and 

hierarchical language, which means that an activity may contain one or more sub-activities. The 

description of an activity consists of several parts: first the user defines the participants in the 

activity, their types, their roles, as well as the initial state of the activity. Second, the user 

describes the expected behavior using a set of control operators detailed in table 1. These 

operators are the base of the ADeL  language. They have a synchronous semantics and they deal 

with events coming from their environment. 

 
Table1.ADeL operators. S, S1 are events (received or emitted);p, p1 and p2 are instructions; condition is 

either an event or a Boolean combination of event presence/absence 

 
nothing does nothing and terminates instantaneously. 

 

[wait] S waits for event S and suspends the execution of the activity 

until 

S is present. Operator wait can be implicit or explicit. 

 

p1 then p2 starts when p1 starts; p2 starts when p1 ends; the sequence 

terminates when p2 does. 

p1 parallel p2 starts when p1 or p2 start; ends when both have terminated. 

p1 during p2 p1 starts only after p2 start and must finish before p2end. 

while condition {p} p is executed only if the condition is verified. When p ends, 

the 

loop restarts until the condition holds. 

stop {p} when S [alert S1] executes p to termination as long as S is absent, otherwise 

when 

S is present, aborts p, sends an alert S1, and terminates 

if condition then p1[ else p2] executes p1 if condition holds, otherwise executes p2. 
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p timeout S {p1}[alert S1] executes p ; stops if S occurs before p terminates  

and possibly sends alert S1; otherwise executes p1when  

p has terminated. 

alert S raises an alert. 

Local (events){p} declares internal events to communicate between sub parts 

of p. 

Call (activity) calls a sub-activity. 

 

Some of these operators are “instantaneous” (nothing, alert) while others take at least one 

(synchronous) instant to process. 

 

Compared to other synchronous languages where it is difficult or even impossible to treat the real 

clock time, ADeL can manipulate it thanks to the operator ”timeout”.  For example, deadlines 

are expressed as follows: P timeout S {P1} (S is a timed signal). To compare with a classical 

approach, in Esterel, this operator should be written as: 

 
abort{p} when S; 

presentS then alert else P1; 

 

This part of Esterel code seems easy for a programmer but it is not the case for non-computer 

scientists such as doctors. Indeed, it would be even more difficult to write this kind of code in a 

declarative synchronous language like Lustre. Moreover, it is more complex to use these 

languages to express the ”during” operator. 

 

The main issue of the synchronous paradigm is that the world is not synchronous in general. Thus 

it requires to transform asynchronous physical  flows of events into a succession of discrete 

instants. The authors propose a synchronous transformer, called Synchronizer. The Synchronizer 

receives asynchronous events from the environment, filters them, decides which ones may be 

considered as “simultaneous”, and groups them into a logical instant according to predefined 

policies. In general, no exact simultaneity decision algorithm exists but several empirical 

strategies may be used for determining instant boundaries, relying on event frequency, event 

occurrence, elapsed time, etc.  To manage the real clock time, the Synchronizer considers the 

clock time as an event like others.  

 

4. ADEL SEMANTICS AND COMPILATION 
 

To provide the language with sound foundations, the authors turn to a formal semantic approach. 

First, logical rewriting rules are a classical and rather natural way to formally express the intuitive 

semantics. This form of behavioral semantics gives an abstract description of a program behavior 

and facilitates its analysis.  However, it is not convenient  as an implementation basis nor suitable 

for proofs (e.g., model-checking).  Hence, an equational semantics, which maps an ADeL 

program to a Boolean equation system representing its finite state machine, was also defined. The 

ADeL compiler can easily translates this equation system into an efficient code. Using such a 

double semantics is somewhat traditional in the synchronous language area[5]. 
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Since there are two different semantics, it is mandatory to establish their relationship. In fact the 

authors proved that the execution of a program based on the equational semantics also conforms

to the behavioral semantics (see4.4).

 

4.1 Mathematical Context 

 
One of the bases of ADeL semantics is the notion of an 

events. Environments record the status of events in each synchronous instant and the goal of the 

ADeL semantics is to compute the status of the output events for each reaction of a 

A 4-valued algebra (ξ  = {⊥, 0, 

the event is  not yet determined, 0 that the event is absent, 1 that the event is present, and 

the status of the event is over determined (error). Usually 

two incompatible status in the same instant (e.g., 0 and 1 in different parts of the program).

 

Previously, synchronous language semantics expressed the status of events using 3

algebras. Indeed, such semantics either cannot reflect how the information about event status 

grows when the algebra is a lattice (0 

instant when the algebra is a complete partial order (c.p.o) (

the beginning of the computation of event status, all unkno

as an event is present in a part of the program, its status grows to 1, otherwise it is set to 0.  This 

way prevents any incremental compilation of activities. 

knowledge of event status of a sub

in a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1 

when the already compiled sub program is included in the main one, because 1 and 0 are 

incomparable with respect to the c.p.o order and 

consider a 4-valued algebra and a structure which allows us to rely on the semantics rules to 

compile programs in an incremental 

means to compile activities. 

 

As a consequence, the authors supply 

structures having two distinct orders denoted 

¬ operation, such that both (

In ξ, ≤B represents an extension of the usual Boolean order and 

information about the presence of an event. These two orders are defined as follows: 

⊥ ≤ K1 ≤K T; 0 ≤B ⊥ ≤B 1; 0 ≤B T 

semantics: the Boolean order is a means to calculate the event status while the knowledge order

reflects the growth of information about event status when computing the equation system. As a 

consequence, four operations in 

“join” operations of (ξ, ≤B) and 

 

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of 

role  with  respect to ≤K  has  to  be transparent: actually, no more nor less information about 

¬x is known, then the authors give the 

¬ T = T, and ¬ ⊥ = ⊥. 

 

Another important feature of our approach is the ability to encode 

Boolean ones. There exist several possible encoding functions and the researcher

which is compatible with the ≤K order:
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oved that the execution of a program based on the equational semantics also conforms

to the behavioral semantics (see4.4). 

One of the bases of ADeL semantics is the notion of an environment, which is a finite set of 

onments record the status of events in each synchronous instant and the goal of the 

ADeL semantics is to compute the status of the output events for each reaction of a 

, 1, T}) is used to represent the status:  ⊥ means that the status of 

the event is  not yet determined, 0 that the event is absent, 1 that the event is present, and 

r determined (error). Usually T Occurs because the event would 

same instant (e.g., 0 and 1 in different parts of the program).

Previously, synchronous language semantics expressed the status of events using 3

algebras. Indeed, such semantics either cannot reflect how the information about event status 

hen the algebra is a lattice (0 ≤ ⊥ ≤ 1), or fix the status of each event to 0 or 1 in each 

instant when the algebra is a complete partial order (c.p.o) (⊥ ≤ 0, ⊥ ≤ 1)[6].  In this latter case, at 

the beginning of the computation of event status, all unknown status are set to ⊥.  Then, as soon 

as an event is present in a part of the program, its status grows to 1, otherwise it is set to 0.  This 

way prevents any incremental compilation of activities. To compile a main activity without the 

sub activity, these latter must be kept to ⊥.An event 

a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1 

when the already compiled sub program is included in the main one, because 1 and 0 are 

incomparable with respect to the c.p.o order and have no upper bound. It is why the authors 

valued algebra and a structure which allows us to rely on the semantics rules to 

compile programs in an incremental way. Moreover, this algebra provides us with a convenient 

As a consequence, the authors supply ξ  with a bilattice structure [7]. Bilattices are mathematical 

structures having two distinct orders denoted ≤B  (Boolean order) and ≤K (knowledge order)

(ξ, ≤B) and (ξ, ≤K) are lattices for their respective orders.                      

represents an extension of the usual Boolean order and ≤K expresses the level of 

information about the presence of an event. These two orders are defined as follows: 

T ≤B 1. These two orders play complementary roles in the ADeL 

semantics: the Boolean order is a means to calculate the event status while the knowledge order

reflects the growth of information about event status when computing the equation system. As a 

consequence, four operations in ξ have been introduced:  and  are respectively the “meet” and 

 and  play the same roles for (ξ, ≤K). 

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of 

be transparent: actually, no more nor less information about 

is known, then the authors give the following definitions for this ¬ operator: ¬ 1 = 0, ¬ 0 = 1,

Another important feature of our approach is the ability to encode ξ elements into pairs of 

Boolean ones. There exist several possible encoding functions and the researcher

order: 
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compile a main activity without the 
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a program has 0 for status and if it is present in a sub program, its status cannot be changed to 1 

when the already compiled sub program is included in the main one, because 1 and 0 are 
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(knowledge order) and a 

) are lattices for their respective orders.                      

expresses the level of 

information about the presence of an event. These two orders are defined as follows: ⊥ ≤K 0 ≤K T; 

1. These two orders play complementary roles in the ADeL 

semantics: the Boolean order is a means to calculate the event status while the knowledge order 

reflects the growth of information about event status when computing the equation system. As a 

are respectively the “meet” and 

Finally, the ¬ operator is used to reverse the notion of truth from a Boolean point of view, but its 

be transparent: actually, no more nor less information about x and 

following definitions for this ¬ operator: ¬ 1 = 0, ¬ 0 = 1, 

elements into pairs of 

Boolean ones. There exist several possible encoding functions and the researchers choose one 
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Here   is the usual Boolean algebra {f f, tt}. 

This encoding function extends to the ξ operators. The structure ( , ≤) is a complete lattice 

for the  ff ≤  tt order. Then, the structure:  defined as follows: 

 

is a bilattice and the following theorem holds: 

Theorem 1 (ξ, ≤B, ≤K, ¬) and are isomorphic. 

To justify this theorem, the authors show that the encoding e previously defined is an 

isomorphism between (ξ, ≤B, ≤K, ¬) and   Indeed, the four binary operations and the 

negation one of the (ξ, ≤B, ≤K, ¬) bilattice are preserved in The proof is detailed in [8]. 

 

As a result of the theorem, the encoding e previously defined for ξ elements can be extended to    

the operators of the bilattice (ξ, ≤B, ≤K, ¬)
1
: 

 

 

Thus, one can efficiently convert ξ-equation systems into the Boolean universe. 

4.1.0.1 Extension to Environments 

 

Owing to the ξ algebra, it is now possible to formally introduce the notion of environments. 

Environments are finite sets of events where each event has a single status. 

 

                                                           
1
In the following equations, + and .denote the join and meet operations of the lattice (B, ≤)) 
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More formally, consider a finite set of events  S = {S0, S1, ...Sn, ...}. A valuation is a 

function that maps an event to a status value in ξ. Each valuation  defines an 

environment :  The goal of the semantics is to refine the 

status of the events of a program in each instant from ⊥ to T according to the knowledge order 

(≤K). 

 

Then, for each instruction p, built with ADeL operators, let us denote the finite set of its  

events and E(p) the set of all possible environments built from .Operations in (ξ, ≤B, ≤K,¬) 

can be extended to environments
2
: 

 

 

The order relation  on environments is defined as follows: 

 
 

 
 

4.2 Behavioral Semantics 
 

Behavioral semantics is a classical and formal way to describe behaviors in an axiomatic way. 

This semantics formalizes each reaction of a program by computing the output environment from 

the input one. To this aim, it defines a set of rewriting rules of the form: 
', 'E term

E
p p→  

where p and p’ are two instructions of ADeL, 'p  is the derivative of p, i.e. the new instruction 

that will react to the next input environment. E is the input environment, 'E is the resulting 

output environment, and term is a Boolean flag which describes the termination of p, and which 

turns to true when p terminates. The rewriting rules of the whole program apply from the root 

instruction, structurally following the syntactic tree of the program. 

                                                           
2
Only the operations needed to define both semantics are introduced. However, the five operators of ξ can 

be similarly extended. 
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Due to lack of space, the behavioral semantics of all the operators cannot be described. Only the 

rules for two operators are presented: parallel which is specific to synchronous languages and 

timeout that takes into consideration the synchronous time.  Nevertheless, a complete description   

is detailed in[10]. 

 

4.2.0.1 Operator parallel. 

 

Operator parallel has two argument instructions that are executed and computed concurrently, 

possibly broadcasting events between them. Thus the evolution of both instructions can have an 

impact on both environments. The operator ends when the two instructions terminate, i.e. when 

termp1 and termp2 become true, and the resulting output environment is the unification of the 

respective resulting environments computed for p1 and p2. 

 

                                           (1) 

4.2.0.2 Operator timeout. 

 

The behavior of:  p timeout S{p1} alert S1 depends both on the behavior of its instruction p and   

on the status of S. If S is not present and p terminates, p1 starts and the behavior of the operator 

turns out to be the behavior of p1 (rule2). 

 

                                       (2) 

If S is present (i.e., timeout elapsed), the computation of the operator stops the execution of p and 

finishes by generating nothing as final result and changing termp to true.  The final environment    

is the output environment E, where the status of the event S1 becomes true (rule3). 

 

                                      (3) 

The behavioral semantics is a “macro” step semantics that gives the meaning of a reaction for 

each ADeL instruction. Nevertheless, a reaction is the least fixed point of a “micro” step 

semantics [6] that computes the output environment from the input one. As mentioned in 

subsection 2, for each instruction p, each monotonic increasing function from has a 

least fixed point which defines the semantics of the program of which p is the root instruction. 

 

More precisely, 
', 'E term

E
p p→  represents a sequence of micro steps such that:  
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1 1 2 2, ,E term E term

E E E
p p p p p p→ → →

and where, at each step, Ei+1 = F(

calculate the output environment from the input one). Since the 

operator on environments, they are monotonic and increasing with respect to the

∀i, Ei+1      F (Ei) and 'E  is the least fixed point of the 

The behavioral semantics is a logical one based on

usable to build compilers because it requires the non

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must 

conform to it. 

 

To get an efficient means to compile programs, the authors introduced another semantics based 

on constructive Boolean logic. Hence, this second semantics is also constructive: one can deduce 

the status of events by propagating the status of input events instead

 

4.3 Equational Semantics 

 
Equational semantics allows us to make an incremental compilation of the ADeL programs 

by translating each root instruction of programs into a 

system is definedasthe4-tuple 

events, Rare the registers, i.e specific

compute the next instant, and D

of each event. 
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1

,, ,

1 1 2, ,..., 'n n

n

E termE term E term

nE E E
p p p p p p+ +→ → →  

(Ei) (F represents the application of one of the semantic rules

calculate the output environment from the input one). Since the F functions rely on the 

operator on environments, they are monotonic and increasing with respect to the    

is the least fixed point of the F 
n 
function application. 

The behavioral semantics is a logical one based on rewriting rules. However, it cannot be really 

usable to build compilers because it requires the non-trivial computation of fixed points. 

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must 

t an efficient means to compile programs, the authors introduced another semantics based 

Boolean logic. Hence, this second semantics is also constructive: one can deduce 

the status of events by propagating the status of input events instead of computing fixed points[6].

Equational semantics allows us to make an incremental compilation of the ADeL programs 

by translating each root instruction of programs into a ξ-equation system. An equation 

 <I,O,R,D> where I are the input events, O are

specific variables acting as memories to record values

D is the definition of the equation system to calculate
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of one of the semantic rules to  

functions rely on the  

   order. Then  

rewriting rules. However, it cannot be really 

trivial computation of fixed points. 

Nevertheless, this semantics is the reference for the ADeL language and any other semantics must 

t an efficient means to compile programs, the authors introduced another semantics based 

Boolean logic. Hence, this second semantics is also constructive: one can deduce 

of computing fixed points[6]. 

Equational semantics allows us to make an incremental compilation of the ADeL programs 

equation system. An equation 

are the output 

values useful to 

calculate the status 
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is deduced from semantic rules expressed for each operators of the language. To define these 

rules, three specific events are defined for each operator: START to start the instruction, KILL to 

kill the instruction, and FINISH to send the termination information to the enclosing instruction. 

 

The operator equation systems are defined by operator semantic rules to compute the status of the 

FINISH, output, and local events, according to the status of START, KILL, input and local 

events. 

 

As example, here follows the equational semantics of the two operators already considered in 

section 4.2. 

 

4.3.0.1 Operator parallel 

Operator parallel unifies (operation ) the output environments of its two operands. The output 

environment is computed according to the following rule: 

 

  

The rule to define  (see Fig. 1) introduces two registers R1 and R2to memorize the 

respective statuses of the FINISH events of the two parallel arguments, since this operator ends 

when  both of its two operands have finished their execution 
3
. Note that the operands do not in 

general terminate in the same instant. 

 

4.3.0.2 Operator timeout. 

 

The output environment of p timeout S{p1} alert S1 is calculated as follows: 

 

 
 

The 
 
equation system (see Fig. 2) contains also two registers to record the way 

this instruction terminates: either with the normal termination of its argument (p) or when the 

timeout event becomes true. To express the rule for timeout operator, the same rules to denote 

events as in the previous operator are used. 

 

 
 

 

 

 

 

 

 

                                                           
3
In operator parallel equation system, the specific signals of the considered operator(here parallel) are 

denotedSTART, KILL and FINISH while the specific signals of the arguments p1 and p2 are indexed with 

the argument respective name. 

 



Computer Science & Information Technology (CS & IT)                                  39 

 

 
 

Figure 1.Equational semantics of parallel operator. 

 

 
 

Figure 2.Equational semantics of timeout operator. 

 

4.4 Relation between Behavioral and Equational Semantics 

The behavioral semantics gives a meaning to each program: for each ADeL operator, it formally 

defines the computation of the output environment and of a Boolean termination flag. The 

equational semantics, by associating a ξ-equation system to each operator, provides a constructive 

way to perform the computation. It is important to establish the relation between the solutions 

obtained by both semantics. To this aim, the following theorem has been proved: 
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Theorem 2  Let p be an ADeL instruction, O a set of output events and E an input environment. If

E
p〈 〉 is the resulting environment computed by the equational semantics, then the following 

property holds: 'p∃ such that
', 'FINISHPE

E
p p→ and ∀o ∈O, o has the same status in

E
p〈 〉 and 'E . 

In short, the theorem means that if the equational semantics yields a solution, there exists also a 

behavioral solution with the same outputs.  It is a proof by induction on the size of a program    

where the size of an instruction is roughly speaking the number of nodes in its syntax tree. The 

proof is detailed in[10]. 

 

4.5 Compilation and Validation 

 
To compile an ADeL program, our system first transforms it into an equation system which rep- 

resents the synchronous automaton as explained in section 2. Then it implements directly this 

equation system, transforming it into a Boolean equation system thanks to the encoding defined 

in section 2 and to theorem 1. The latter system provides an effective implementation of the 

initial ADeL program. 

 

Since the equations may not be independent, a valid order (compatible with their inter-

dependencies) is needed to be able to generate code for execution (recognition automata), 

simulation, and verification. Thus an efficient sorting algorithm has been defined [11], using a 

critical path scheduling approach, which computes all the valid partial orders instead of one 

unique total order. This facilitates merging several equation systems, hence,  an incremental 

compilation can be performed: an already compiled and sorted code for a sub-activity can be 

included into a main one, without recompiling the latter. 

 

The internal representation as Boolean equation systems also makes it possible to verify and 

validate ADeL programs, by generating a format suitable for a dedicated model checker such as    

our own BLIF CHECK
4
. The same internal representation also allows us to generate code for the  

off-the-shelf NuSMV model-checker
5
. 

 

4.5.0.1 Use Case. 

To  illustrate our purpose, a small use case in the domain of healthcare is detailed. The goal is to 

monitor the drug treatment of an Alzheimer person.  The activity medicine To Take must check 

that  the person is near a table, takes a glass, eats some drugs, and drinks. If the person does not 

drink before 2 minutes, a danger event is sent. 

 

In the graphical format,  users declare roles of actors in the declaration window of the graphical   

tool. Then, they declare sub-activities, and describe the steps of their activity along a ”timelined 

organigram” (see Fig. 3). 

 

 

                                                           
4
http://www.unice.fr/dgaffe/recherche/outils blif.html 

5
http://nusmv.fbk.eu/ 
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Figure 3. Graphical format of the activity description (organigram) 

 

In the textual format of ADeL, users first declare types of actors. For this use case,  there are 2  

types: a Zone, a Person, and Equipment. Then, they have to assign roles to actors: in our case, a 

patient(Person), a medicine, a glass, a TV(Equipment) are needed. The declaration is as follows: 

 
Type Person, Equipment; 

Activity medicineToTake : 

Roles  

patient:Person; 

medicine:Equipment;  

glass: Equipment;  

TV:Equipment; 

 

After that, users define the name of the activity, its expected events and sub-activities: 
 

SubActivities 

next_to_table(Person);  

take(Person, Equipment);  

eat(Person,Equipment);  

watch(Person,Equipment); 

drink(Person); sleep(Person); 
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Finally, they describe the activity by defining the initial state, and by combining the sub-activities 

using operators of the language. 

 
InitialState:inside_Zone(Patient); 

start 

{ 

next_to_table(patient) 

then 

eat(patient,medicine) parallel take(patient, glass) 

then 

drink(patient) timeout 2.0 minutes 

{ watch(patient,TV)then alert ( danger) 

then 

sleep(patient) 

} 

End 

 

This code is not correct because the alert should be sent went the timeout is reached. To  prove     

that the alert works correctly, the medicine To Take activity is compiled and the input code for the 

NuSMVmodel-checkerisgenerated.ThentheLTLtemporalpropertycanbechecked: if danger is 

true then cond_timeout_2_minutes must have been previously true (“danger ⇒O 

cond_timeout_2_minutes”)
6
. 

 

The property is false and a generated counter example allows to fix the problem. Hence, the 

correct body of the program is: 
start 

{ 

next_to_table(patient) 

then 

eat(patient,medicine) parallel take(patient, glass) 

then 

drink(patient) timeout 2.0 minutes 

{ 

watch(patient,TV) then sleep(patient) 

}alert(danger) 

end 

 
Now the property holds. 

 

5. RELATED WORK 

 
Synchronous languages such as Esterel [1] are meant to describe reactive systems in general and 

thus can be used to describe human activities. These languages and ADeL use a logical time 

which means that the recognition is performed only when something meaningful occurs. 

Although their syntax is rather simple, their large spectrum makes them difficult to master by 

                                                           
6
cond_timeout_2_minutes is a Boolean variable true when the timeout is over 
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some end users.  Being dedicated to activity description, a language like ADeL appears more 

”natural” for its end users.  All these synchronous languages have been given formal semantics.  

For instance, Esterel has several semantics, with different purposes. In particular, one of these 

semantics provides a direct implementation under the form of “circuits”. ADeL adopts a similar 

approach but it simplifies some operators whose semantics in Esterel is complex. 

 

Message Sequence charts [12, 13], which are now introduced in UML, and Live Sequence Charts 

[14] are also specification languages for activities with a graphical layout that immediately gives    

an intuitive understanding of the intended system behavior. These languages may be given formal 

semantics liable to analysis. Message Sequence Charts (MSC) graphically represent the messages 

exchanged among the actors along time. It is possible to model a complex activity involving 

several different activities (i.e., MSCs) using High-level Message Sequence Charts (HMSCs). 

The HMSCs support also parallel composition.  The MSC operators and the hierarchical 

composition    of HMSCs are similar to our approach. However, [15] reveals “pathologies” in 

MSCs, due to defective MSC specifications. These pathologies mainly affect synchronization 

issues. For instance races may arise from discrepancies between the order of graphical description 

and system causalities.  In our case, since the Synchronous Paradigm is meant to avoid these 

synchronization problems, race conditions are detected and the program is rejected at compile 

time. Another pathology comes from possible ambiguous choices between events. In the 

Synchronous approach, this kind of problems is avoided by producing deterministic systems, in 

particular mastering event simultaneity. MSCs address the pathology problems by using model 

checking and formal verification. In [13], the authors illustrate problems of the MSCs models 

verification for synchronous and asynchronous interpretations and suggest different techniques to 

fix these model checking problems in several kinds of MSCs representations. In our case, even 

though model checkers may be interfaced, it is not mandatory. Indeed, most of these pathologies 

are compile-time checked. 

 

Live Sequence Charts (LSCs) [14] is another activity-based specification and modeling language.   

It is an extension of MSCs, more expressive and semantically richer. Similarly to ADeL, LSCs 

are used to specify the behavior of either sequential or parallel systems. They have a formal 

semantics and can be transformed to automataas ADeL. This allows analysis, verification, and 

testing using depth-first search methods. Model checking of LSCs is possible by translating them 

into temporal logic, but the size of the resulting formula, even for simple LSCs, makes it difficult. 

However, [16] proposes a more efficient translation, but only for a class of LSCs. 

 

Many works in video understanding address the difficult task of extracting semantically 

significant objects and events from sequences of pixel-based images. A good survey of the 

corresponding techniques is presented in Lavee and all [17]. These techniques are based on well-

founded mathematical methods such as hidden Markov models, (dynamic) Bayesian networks, 

finite state machines, Petri nets, constraint satisfaction, etc.  The authors rely on tool based on 

such techniques to obtain reliable input events. These approaches allow a form of activity 

recognition (namely “composite events”) but ADeL addresses more complex activities with 

longer duration    and involving variants, parallel behaviors and multiple actors.  Moreover it 

loses the dependency on video sensors and proposes a more generic approach. 

 

In [18], authors propose a natural and intuitive language to describe activity models using actors, 

sub activities, and a set of constraints. They also introduce a temporal constraint resolution 

techniques to recognize activities in real time. This approach is only dedicated to recognize 

activities using video interpretation, while the authors in this work aims to develop a generic 
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approach that  can be used in a large range of domains, by accepting basic events that can come 

not only from  video interpretations but also from other sensors. On the other hand, as authors are 

working with video interpretation in real time, they can receive the same events (the same image 

frame) for  a  long lapse of time without any changements which makes the system awake and 

working for nothing. With the synchronous approach, the notion of logical time makes the system 

work only when it receives a significant event. 

 

Researchers in [19] work in activity recognition in smart houses to provide Activities of Daily 

Living (ADL) and Instrumental Activities of Daily Living (IADL) assistance for their users. They 

have developed a generic conceptual activity model which allows the modeling of simple and 

composite activities. To this aim, they propose an hybrid approach which combines ontological 

formalisms, which describes the link between the activities and their entities, and temporal 

knowledge representations which specify the relationships between sub-activities that form the 

composite activity. Then, they encode their characteristics and forms. In our case, ontologies are 

not used, the ADeL language has only semantics which help to generate the needed activity 

model to recognize simple and complex activities.  Actually, a basic activity can be represented 

as an event or a simple activity.  Activity models for complex/composite activities can be created 

by composing the sub-activity models which constitute them. 

 

6. CONCLUSION AND PERSPECTIVES 
 

This paper presents a formalization of a synchronous approach to describe (human) activities and 

to generate a computer recognition system. The Synchronous Paradigm offers several advantages 

in terms of expression power, ease of implementation, verification through model checking, etc. 

The authors endowed their own activity description language (ADeL) with two complementary 

formal semantics, one to describe the abstract behavior of a program, the second to compile the 

program into an automaton described as an equation system. They proved a theorem which 

establishes a consistency relation between these two semantics. 

 

The first tests show that the current code that ADeL generates, basically composed of Boolean 

equations, is easy to integrate in a recognition system, produces compact code, and is efficient at   

run time. There remains a fundamental issue, common to all synchronous approaches: at the 

sensor level, the events are asynchronous and they must be sampled to constitute input 

environments and to define the synchronous “instants”. No exact solution is available; several 

strategies and heuristics have been already tested but large scale experiments are still necessary. 

Based on formal foundations, work remains to be done to complete a full framework to generate 

generic recognition systems and automatic tools to interface with static and dynamic analysis 

tools, such as model checkers or performance monitors. 
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