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ABSTRACT 

 

The research community is interested in developing automatic systems for the detection of 

events in video. This is particularly important in the field of sports data analytics. This paper 

presents an approach for identifying major complex events in soccer videos, starting from 

object detection and spatial relations between objects. The proposed framework, firstly, detects 

objects from each single video frame providing a set of candidate objects with associated 

confidence scores. The event detection system, then, detects events by means of rules which are 

based on temporal and logical combinations of the detected objects and their relative distances. 

The effectiveness of the framework is preliminary demonstrated over different events like "Ball 

possession" and "Kicking the ball". 
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1. INTRODUCTION 

 
Identifying intermediate and high-level complex events from an unstructured video is an 

extremely challenging task due to the variation and the dynamics of the video sequence. In this 

work, the focus is on the analysis of videos showing team sport activities and, more specifically, 

soccer game. Given the nature of the game itself, where two teams each of eleven players produce 

a vast number of possible interactions, soccer is a highly complex system [16]. Due to the high 

complexity governing the "beautiful game", the statistical analysis of soccer games has fascinated 

scientists and experts. 

 

Data are playing an increasingly key role in sports, but they must be processed to extract 

meaningful information [2, 3]. Data-driven decision plays a significant role in soccer and many 

other sports. Collecting and properly handling quality data from a soccer match is, therefore, 

clearly of immense value for a team, management and other stakeholders. 

 

The data typically collected from a soccer game include: goals scored, assists, number of shots on 

goal, possession information, corners, off sides, fouls, cards given, injuries, substitutions, etc. 

There is scope for the collection of larger data sets, such as the position-per-time of the ball, and 

each player on the field throughout the game, or on a short video clip. From this complex data set, 
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the objective is to detect specific and semantically meaningful events like player ball possession, 

team ball possession, kick or shoot, etc. Researchers from all over the world have been working 

for more than a decade to find different solutions for the video analysis. Their research in the 

domain of event processing is more focused on structured data. However, there are several 

applications for event driven systems based on image data. Therefore, there is a need for a system 

that can process multimedia events [1] from images and videos. 

 

In this paper, the proposed framework attempts to detect different events. Images are given as an 

input to the object detector \Single Shot Multi-Box Detector" (SSD), which provides us with 

objects expressed in terms of bounding boxes with a given confidence score. We will use this 

system as a filter because the objects associated with confidence score higher than a specific 

threshold will be the input to the event detection system for detecting events. Then based on the 

distance between the bounding boxes of objects and using logical and temporal operators, events 

are defined. 

 

2. RELATED WORK 

 
Until the discovery of deep learning, sports video analysis, especially soccer video analysis, has 

been classified into two categories: object tracking and pattern recognition [21, 9]. The use of 

customized cameras [14] results in computational cost in case of object tracking, whereas the 

pattern recognition methodology simply extracts lower-level features and then uses a classifier to 

detect higher level events. A few methodologies which have been used with noticeable success 

for soccer activity recognition include: Qian et al [17] categorization of events into distinct 

categories like shoot, goal, etc. Such an approach includes feature extraction and heuristic rules 

for detecting events. They perform low-level analysis to detect marks (field, lines, logo, arcs, and 

goalmouth), player positions, ball position, etc, and then derive mid-level features using these 

cues. In the end, they developed a rule-based system to detect salient events like the goal, corner, 

etc. Jin et al [10] applied a Hidden Markov-based algorithm for video event detection based on 

cues fusion and integration. Detecting higher-level events from lower-level events is an important 

and challenging problem for soccer video analysis. The detection reveals, e.g., the movement of 

the players and the ball on the field, which could be used to identify certain actions ('passing the 

ball', 'shot on goal', etc.) or to better understand the overall trend of the game. 

 

Since 2012, deep learning methods such as Convolutional Neural Networks and Restricted 

Boltzmann Machines have been successfully used for event and activity recognition. CNNs have 

shown better performance in image classification, object detection and modeling high-level visual 

semantics [11],[8],[6]; Recurrent Neural Networks have shown good results in modeling temporal 

dynamics in videos [12]. Frequently used action localization techniques, such as fast r-CNNs and 

faster r-CNNs [18],[7], usually start with the region of interest (proposal generation) to obtain a 

set of candidate regions, then use a fully connected layer at the end to classify objects. 

 

Current approaches mentioned above focus on event recognition in soccer videos from the 

perspective of feature extraction, models, and classifiers for extracting low-level events. Such 

approaches lack the semantically meaningful representation of intermediate events. Injecting 

semantic definition and structural knowledge in these approaches is rather difficult. So, this 

motivates us to start from the basic building blocks and rebuild a system that allows exploiting 

the semantic knowledge about events, which can be used to recognize the intermediate and high-

level complex events. To the best of our knowledge, while there are systems that automatically 
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detect basic facts, like the position and the movement of the player, there are no automatic 

detectors for semantically complex events, like scoring on a penalty kick, or scoring on a corner 

kick. 

 

The rest of the paper is organized as follows. Section 3 describes the video events as simple and 

complex events. Section 4 elaborates distinct types of events for the soccer scenario. In Section 5 

the proposed architecture is highlighted and in Section 6 results and future work are presented, 

respectively. In section 7 we draw some conclusions. 

 

3. VIDEO EVENTS 
 

A precise ontological definition of event is still an open point. To the purpose of this paper we 

take the approach recently proposed in [4]. The main objective of this section is to precisely 

define the event structure we will adopt in our approach. 

 

Video events can be defined as interesting events which capture the user attention [20] . For 

example, a soccer "shot on goal" event is defined as the ball kicked by a player and the ball 

moving towards the direction of the goal. 

 

3.1 Simple Events 

 
A simple event type is defined as follows: 

 

 
 

where ID is the identifier, seType is the event type, e.g. "throwing the ball", and t is the time 

instant in which the event occurs, role1..., rolen (n = 1,....,nmax) are the roles that different objects 

play in an event of this type, e.g. one role of simple event "throwing the ball" is the subject who 

throws and a second role is the thrown object; finally oTypei is the legal type of object that can 

play the role rolei, e.g., it is only players who can throw, and only balls can be thrown. Summing 

up, the complete definition of the event type "throwing the ball" is 

 

 
 

A specific instance of an event of simple type defined in (1) is the following tuple: 

 

 
 

where ID is the event identifier, O1 and On are identifiers of objects detected in the frame 

associated to the time t, respectively. The instance of "Throwing_the_ball" 

 

 
 

describes a simple event of type "throwing the ball" that happened at time t, where the obj02 

throws the obj01. Furthermore obj01 and obj02 are two objects detected in the frame 

corresponding to time t, of type ball and player respectively. 
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3.2 Complex Events 

 
Complex events are built by appropriately aggregating events, previously defined. More precisely, 

starting from simple events, we can apply logical operators or temporal operators to build higher-

level complex events. We can thus define the hierarchy of events, from the lowest level including 

the simple events to the higher and higher levels corresponding to more and more complex 

events. In the following, we define the two categories of complex events: logical complex events 

and temporal complex events. 

 

- Logical Complex events A logical complex event stems from the application of logical 

operators like AND, OR, NOT to a set of events which may be simple or complex. 

 

 
 

where ID is the event identity, ceType is the complex event type (such as "The goal is 

valid only if there is no foul"), t is the time instance in which the complex event occurs, L 

is the set of lower-level simple or complex events e1. . . . . . en  joined by logical operators 

op (i.e. AND, OR, NOT). 

 

- Temporal Complex events A temporal complex event derives from the application of 

temporal operation THEN as follows: 

 

 
 

where ID is the event identifier, ceType is the complex event type (such as “player 1 

passes the ball to player 2"), t is the event occurrence time, L is the sequence of lower-

level simple or complex events, e1. . . . . . . en that must occur in the order. For example, 

e1, e2, e3, e4 may be, respectively, “player1 possesses the ball", “player1 kicks the ball", 

“the ball approaches player 2", “player2 gets in possession of the ball". 

 

4. TYPES OF EVENTS 

 
One of the most interesting things about soccer analysis is the ability to recognize events, such as 

a kick, goal, pass, offside, cards, ball possession, etc. from a common video. Most of the videos 

previously used in the event recognition use multiple fixed cameras to observe the position of all 

the players and the ball on the soccer field [5]. The use of such cameras improves the overall 

accuracy of the system for object tracking but they are computationally expensive. The fragment 

of video we have used can be easily accessible from the internet. 

 

In this section, we try to define a few of the significant low or intermediate complex events in 

soccer video (consisting of a sequence of frames), such as ball possession and kicking the ball 

based on the distance between the bounding boxes of involved objects, and rules (combination of 

temporal and logical operators) defined for each event category. 

 

In this first attempt we propose a rule-based definition of video events, but we are aware that this 

will turn out to be not very flexible, and in the future we will investigate on the possibility of 

automatically learning event detectors by using supervised machine (deep) learning techniques. 
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4.1 Ball possession Event 
 

Ball possession can be classified as Player Ball Possession (PBP) and Team Ball Possession 

(TBP). Both have the same starting point but different end-points [13]. In our approach, only 

those time intervals in which the ball is in play are considered for determining the ball possession. 

When the ball is in play one of the two teams always has the ball possession. PBP starts 

immediately as soon as a player begins to perform an action with the ball and ends when the 

player is no more able to perform any action with the ball or there is game interruption. 

 

Player ball possession can be formally defined as follows: the event occurs when the distance 

between a player and the ball is below a threshold value and that player is the nearest to the ball. 

 

 
 

The event "Player Ball Possession" occurs at time when the distance D (pi,b,t) between the 

player pi and the ball b at time t is less than the threshold Th ,  and the distance D (pj,b,t) between 

the ball and any other player pj, j ≠ i, is greater than D (pi,b,t). Also, after interaction, the distance 

between the player and the ball is very low for an appropriate number of  consecutive frames. 

The value Th determines the threshold value for a player being able to physically interact with the 

ball and must be calculated experimentally. 

 

4.2 Kicking the ball Event 

 
In the soccer video, with reference to the consecutive sequence of frames, the event 

corresponding to kicking the ball is identified, initially if the distance between a player and the 

ball is very low for a few frames. Then, if the distance between a player and the ball increases in 

an appropriate number of the subsequent frames and the player is no longer able to interact with 

the ball. We can formally define the event Kicking the ball as follows: 

 

 
 

The expression above holds true as long as the distance between the player and the ball increases 

after their interaction. Th is the interaction threshold between the player and the ball. In a game 

Kick can be classified into several types: Free kick, Goal kick, Penalty kick, Corner Kick etc. 
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4.3 Limitations 

 
While defining the events we are not considering all special cases that might occur during a 

match. In some cases, the player does not interact with the ball, and runs besides the ball without 

touching it. Player ball possession only starts with the first touch. Also, considering ball 

possession for the player nearest to the ball is wrong, e.g, when that player is standing with back 

to the ball. To better differentiate between kick or shoot and dribble, one can think of the speed 

with which the ball travels after the player ball interaction. For example, the speed of the ball 

after dribbling will be slower than that of kicking or shooting. We are also considering the same 

threshold for all the players as taking into account player profiles related to their typical 

interaction with the ball is out of the scope of this work. 

 

5. PROPOSED ARCHITECTURE 

 
Figure 1 describes the workflow for our methodology. The data at our disposal consist of 

approximately 5 mins long video, consisting of 7.5k annotated frames. Objects are detected from 

every single frame using SSD [15]. Then a specific threshold regarding the confidence score is 

defined to filter out the objects which are not required to define events. Finally, events will be 

detected based on the distance between the bounding boxes of objects using temporal and logical 

operators. 

 

 
Fig.1. Block diagram of the proposed architecture 

 

Frame Data We have a sequence of frames { f1, f2......fn } Each frame is a set of bounding boxes, 

each bounding box gives us the position and dimension of an object, such as the ball or a player, 

by specifying the coordinates of the region containing the object. Frames are given as input to the 

SSD to detect objects with a confidence score. 

 

Single Shot Multi-Box Detector (SSD) Most of the methods previously used for object detection 

have one thing in common, they have one part of their system dedicated to providing region 

proposals which includes re-sampling of pixels and features for each bounding box, followed by a 

classifier to classify those proposals. These methods are useful but are computationally expensive 

resulting in low frame rate. Another simpler way of doing object detection is by using a high-

speed SSD system, which combines the two tasks of region proposal and classification in one 

system. The key idea behind SSD is small convolutional filters are applied to feature maps of 

bounding boxes to predict the category scores, using separate predictors for different aspect ratios 

to perform detection on multiple scales. 

 

SSD needs an input image and ground truth for each object class during training. We have created 

this training set starting from a fragment of a real soccer match video, using Vatic [22], a Video 

Annotation Tool. Vatic allows annotating objects inside each frame drawing a bounding box 
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around them. The output of this process is a set of images with relative bounding boxes 

coordinates saved in PascalVOC format. 

 

Table 1 shows the numbers of object manually annotated, used for the training and test of SSD. 

 
Table 1. Objects manually annotated to train and test the SSD 

 
 

The training set in Table 1 has been used to create the SSD model. The average precision on the 

test set is given below in Table 2. 

 

An example of the input image and the output image from the soccer match to SSD is shown in 

Figure 2 and Figure 3, respectively. 

 

Filtering Filtering is performed by defining a specific threshold for the objects detected by the 

SSD. For example, as multiple players are detected in a single frame, then using a specific 

threshold, we can discard players in the frames which are not necessary to define the action. 

 
Table 2. Average precision of the system 

 

 
 

Event Detection System In many application domains, such as video event activity detection, 

sequences of events occurring over time need to be studied to summarize the key events from the 

video clips [19]. This section deals with the specific strategies adopted by the system for event 

detection. The steps involved are the detection and collection of the simple and low-level 

complex events, and the composition of the same to detect higher-level complex events. The 

system also includes an event type to identify the class of events. The new incoming event is 

registered within the system with a unique event identifier. The event recognition is performed by 

means of monitoring routines at two levels, low-level recognition and high-level recognition. The 

low-level event recognition involves detection of simple primitive events, while high-level event 

recognition handles detection of complex events. An event detection system receives, as an input, 

bounding boxes associated with a confidence score. Each bounding box also represents the 

coordinates of the object. To recognize the higher-level complex event, the system first detects 

simple and low-level complex events based on the rules defined for each event category and 

stores those events in the memory. We then apply logical and temporal operators on the detected 

events to recognize the higher-level complex events. Although there are several programming 

languages available to implement the event detection system, python was our preferred choice 

because of its highly intuitive general-purpose syntax. 
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Fig. 2. Original frame 

 

 

Fig. 3. Objects detected by SSD with confidence score 

6. RESULTS AND FUTURE WORK 

We have applied the proposed system to detect low-level complex events like "ball possession" 

and "kicking the ball" in the real soccer video. We have experimented on 5 minutes short video 

consisting of approximately 7.5k frames. We are aware of the fact that a limited number of events 

can be detected from this small data set. In the future, we will experiment on a larger data set, 

thus the number of events can be increased. Table 3 shows the event detection results. For Ball 

possession event, 13 out of 14 events have been detected successfully, one event was missed as in 

few frames two players are very close to each other, so it is hard to recognize possession. In our 
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experiments, the detection of such events occurs if the event definition is met for an appropriate 

number of consecutive frames. In this very preliminary application of the proposed event 

detection framework, we referred to a heuristically chosen number of consecutive frames equal to 

5. For example, if the distance between the ball and the player is very low for five consecutive  

frames, we have a Ball possession event. 

 
Table 3. Event detection results 

 
 

In the next consecutive sequence of frames, if the distance between the ball and the player 

increases with respect to a specific threshold in an abrupt manner, we have a kicking the ball 

event. For kicking the ball event, 16 out of 19 events were detected successfully, three events 

were missed as in some cases it may happen that when the players kick the ball, the ball hits the 

next closest player in fewer than five frames. 

 

In the future, based on the simple and low-level complex events, we are planning to detect more 

complex events such as "Pass the ball" and \Shot on goal" by effectively merging the simple and 

low-level complex events using logical and temporal operators. To define the higher-level 

complex events, we have taken into consideration events at different abstraction levels. To define 

the event "Pass the ball" let us consider Player1 and Player2 of the same team. While referring to 

players of the same team let us assume that the color of the upper half of the bounding box is the 

same. For instance, the higher-level complex event "Pass the ball" basically occurs if the 

following lower-level complex events occur. With respect to the successive sequence of frames, 

the event corresponding to "Player1 is in possession of the ball" is identified, if the distance 

between Player1 and the ball is very low for a few frames. Then, if the distance between Player1 

and the ball increases in an appropriate number of the subsequent frames we can define the low-

level complex event as "Kicking the ball". In the same consecutive sequence of frames if the 

distance between Player2 (of the same team as Player1) and the ball decreases up to a very low 

value and the possession of the ball is with Player2, while there is no other object between the 

ball and Player2, then we can define the higher-level complex event as "Pass the ball": 

 

 
 

where 23 is the identifier, Pass is the event type,  is time instance in which the event  

occurs. passingPlayer is the role performed by p1 on object ball, receivingPlayer is the role 

performed by p2 on object ball. 

 

To define the event "Shot on goal" let us consider the three entities player, ball and goal post. The 

higher-level event “Shot on goal" basically occurs if, with reference to the consecutive sequence 

of frames, the player kicks the ball, the distance between the ball and the player increases and the 

distance between the ball and the goal post decreases up to a specific threshold. Then we can 

define the higher-level event as "Shot on goal": 
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where 20 is the identifier, ShotOnGoal is the event type,  is the event occurring instance, 

KickingPlayer is the role performed by p, GoalPost is the role of object G, when object ball 

approaches towards it. 

 

7. CONCLUSIONS 
 

In this paper, we have defined a few simple and complex events for the soccer video. We have 

also proposed a distance-based event detection system. The event detection system takes as an 

input bounding boxes associated with a confidence score for each object category. The system 

successfully detects the low-level complex events, such as: "Ball possession" and "Kicking the 

ball ". The results demonstrate the validity and the effectiveness of our methodology. 
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