

Dhinaharan Nagamalai et al. (Eds) : ITCSE, WiMo, ICAIT, ICDIPV, CRYPIS - 2018
pp. 15–22, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.80702

SERVERLESS CLOUD COMPUTING: A

COMPARISON BETWEEN "FUNCTION AS A

SERVICE" PLATFORMS

Víctor Juan Expósito Jiménez and Herwig Zeiner

JOANNEUM RESEARCH
Forschungsgesellschaft mbH, Steyrergasse, Graz, Austria

ABSTRACT

Cloud computing is moving fast and continually progressing. Beyond the microservices

architecture, a new paradigm appears to be evolving and complementing it. By using a

serverless computing architecture, faster and more reliable developments are possible in

several fields such as the Internet of Things, industrial or mobility applications. In this paper, a

serverless computing architecture is described and, in addition, a comparison of the most

important "Function as a Service" platforms is given.

KEYWORDS

Serverless Architecture, Function as a Service (FaaS), Cloud Computing, Microservices

1. INTRODUCTION

The Internet of Things (IoT) has changed the way applications are designed. Billions of devices
will be connected to the network in a near future. The next generation of connected applications
has to change the way they have been designed to support this exponential growth of connected
devices and their corresponding services.

At the moment, a microservices architecture can fulfill these requirements where the combination
of different services is a main issue. In this kind of cloud computing architecture, all tasks and the
logic are split in small services, where each is able to serve just one specialized purpose instead of
one monolithic component for all purposes. This allows a more versatile development in which
maintenance and updates can be done only to the needed components without changing the whole
core system. Every service is isolated and all information and all controllers are accessible
through external APIs. The popularization and the standardization of RESTful APIs give
developers the ability to use some external services which can take too many resources for a self-
implementation. Moreover, reliability, security or scalability are some of the few constrains
modern applications have to handle.

Going a step forward, what if there was a way to build a pure native cloud application in which
clients (i.e. mobile applications) make all requests and handle the logic of the result without any
central server? This type of design is called a serverless computing architecture. This concept will

16 Computer Science & Information Technology (CS & IT)

be possible when more cloud services are available. In addition, cloud computing services have
grown exponentially in the last decade. For example, Amazon Web Services (AWS) and
Microsoft Azure are constantly updating their cloud services to offer more possibilities to satisfy
all requirements that developers could be needing to design and develop applications. In this
paper, a detailed analysis of the current status of serverless cloud computing architecture and
Function as a Services (FaaS) platforms is given.

The next section gives an overview of existing related work in the field of cloud computing
architectures. Section 3 explains the basics of serverless architecture and Function as a Services
(FaaS) platforms. In section 4, a brief description of each provider is given. The results of the
evaluation are discussed in detail in section 5. Finally, section 6 concludes this work.

2. RELATED WORK

There are many publications which deal with modern architectures and their usage to build cloud-
based applications in different fields. Adrian Cockfort [1] explains how modern cloud platforms
help companies to speed up the developments and why Netflix decided to move to cloud services
to increase the availability and the reliability of the platform. Alan Sill [2] gives some guidelines
for designing an application by using a microservices architecture. The authors describe in [3]
how the microservices architecture can be used to build a web of things platform. This platform
uses some of the principles that define a serverless architecture. Moreover, the authors in this
paper are focused on the time constraints and the effect of the delays between microservices on
the platform behaviour [4] describes in detail the process and the advantages of using this kind of
architectures for an Internet of Things application. Finally, [5] characterizes the implementation
of microservices for critical applications in which the sensitive data is handled, integrity and
confidentiality are key points.

An important point to consider when designing a cloud application is the cost of the different
external services. Andy Singleton [6] discusses how microservices can help companies to avoid
errors when a program is too big to be successfully maintained, and the costs that can be saved
once a microservices architecture is implemented. He also explains in which cases moving to a
microservices architecture makes sense. [7] explains all parameters and costs that developers
have to keep in mind when building resilient cloud services.

3. SERVERLESS COMPUTING

A serverless architecture expands the concept where developers do not have to worry about a
central server. Some scenarios where this kind of architecture can be successfully implemented
are shown in book [8]. Developers can design a complete application with the combination and
the communication between third-party services, native cloud services and self-enabled
components that give them the flexibility to choose the best service which fulfills the
requirements of the application as well as faster development, since an existing service can be
instead of developing a one.

On the other hand, the usage of third-party services makes development more dependable on
external conditions which are not under the developer's influence. For example, if a provider
changes the API of a service, the developer has to modify this aspect on the application or the
latter will not be able to connect in future releases. Moreover, all major companies such as

Computer Science & Information Technology (CS & IT) 17

Microsoft or Amazon, which already have a complete cloud services suite, are trying to integrate
all services to their own platforms. Therefore, the migration from one provider to another can also
be difficult for the interconnection of services from different providers.

In the context of a serverless architecture, two scenarios can be identified:

Backend as a Service (BaaS): Usually a third-party component which provides complete service
to the application. In this case, all of the business logic is carried out by the service and the client
just gets the results of the task.

Function as a Service (FaaS): The service just runs a small piece of code and gives the result of
the function to the client.

In this paper, the main focus is on the analysis and the comparison of FaaS platforms. The usage
of FaaS has some advantages in comparison to other types of applications. In traditional
applications, developers have to consider all aspects of the environment in which the code is
running, like hardware or operating system versions. Once a FaaS platform is used, this procedure
is completely transparent to them. Furthermore, no additional time is needed to consider the
amount of resources the code needs to be successfully executed on a computer. For instance, the
application's design keeps in mind average requests per second to assure the needed hardware is
able to handle them with a minimum performance. At this point, there are always some request
peaks that may compromise the performance of the whole system due to a lack of resources to
handle such an unexpected amount of requests. When it comes to this kind of situation, a FaaS
platform comes in handy since the platform automatically handles these request peaks in a
transparent way to guarantee a good performance. So developers only have to worry about the
application performing well.

When comparing FaaS and PaaS (Platform as a Service), both seem similar at first glance, but on
closer look, one separating key aspect becomes evident. According the article [9], Mike Roberts
explains that the main difference between both services is the scalability. When PaaS is used, the
developer has to keep in mind the resources in case the application receives a request peaks. This
process is transparent, however, if FaaS is used.

4. PLATFORMS

This section gives an overview of the principal FaaS platforms as well as a description of the
functionality and the special features each one implements.

4.1. AWS Lambda

The Amazon cloud provider was the first to offer a FaaS platform at the end of 2014. Lambda is
offered as an isolate service from other AWS services and the price is calculated on the basis of
two parameters: the number of executions and the execution computing time according to a
defined memory. Amazon also includes a free tier per month before charging costs. AWS
Lambda is able to run code of the following programming languages: Java, JavaScript, Python
and, since November 2016, C#. The service is strongly integrated with the Amazon Web Services
and functions can be triggered by other services too, like Kinesis, S3 or DynamoDB.
Unfortunately, a HTTP trigger is limited to the Amazon API Gateway Service which may add

18 Computer Science & Information Technology (CS & IT)

complexity and some delays. One of the flaws of Lambda is the way in which dependencies are
handled. There are no configuration files in which developers can version a function or define its
dependencies. Therefore, a complete package must be uploaded every time the function changes.

Table 1. Comparison between Function as a Service platforms.

 AWS Lambda Azure Functions Google Cloud

Functions

IBM

OpenWhisk

Resease Date Nov 2014 Nov 2016 Beta Feb 2016

Price $0.00001667/GB-s
and $0.20 million

execs

Azure subscription
plan or

$0.000016/GB-s
and $0.20 Million

Execs

$0.0000025 GB-s
and $0.40 Million

Execs

IBM Bluemix
plan or

$0.000017/GB-s

Monthly Free
Tier

400,000 GB-s and
1 million execs

400,000 GB-s and
1 million execs

400,000 GB-s and
2 million execs

400,000 GB-s

Maximum time

to execute

300 seconds N/A 540 seconds 300 seconds

Compatibility Java, JavaScript,
Python

JavaScript, Python,
PHP, C#, F#, bash,

batch

JavaScript JavaScript,
Python, Swift,

Docker

Available

memory usage

128MB-1536MB 128MB-1536MB 128MB-2048MB 128MB-512MB

HTTP trigger API Gateway

Native Native Native

Open source No Yes (Runtime)

No Yes (Runtime)

4.2. Microsoft Functions

Previously known as a part of Azure WebJobs, Azure Functions was released in November 2016
as an isolated service within the Azure cloud suite. With the release, the related runtime was also
published as open source under MIT license and is available in its GitHub repository [10]. The
fees of the service follows the same calculation rates as AWS Lambda and it also includes a free
grant with the same features. Unlike Lambda, Azure Functions service can be purchased as a pay
per demand model or as a part of an Azure subscription plan. Besides the compatibility with
common programming languages such as C#, F#, and JavaScript; Functions is also able to
execute scripts that use the Windows Command Line, the Power Shell syntax as well as the more
common PHP and Python functions which provide more flexibility to the developers;
unfortunately, these are still in an experimental status. Moreover, the functions are accessible
through HTTP without using any API gateway.

Computer Science & Information Technology (CS & IT) 19

4.3. Google Cloud Functions

Like the other big cloud players, Google has also developed its own FaaS platform called Google
Cloud Functions. This service is still a beta release, so its possible functionality and features will
be extended in the release version. Unlike other providers, Google Cloud Functions currently
supports only JavaScript. On the other hand it is different to the other services. The service allows
the usage of more memory, in this case, a maximum of 2GB, and also the free tier gives 1 million
executions more than the Azure Functions or AWS Lambda. Moreover, the maximum time of
execution for a function increases until 9 minutes. Another interesting aspect of Google Cloud
Functions is the possibility of calculating the bill of the service by using GHzseconds rather than
the otherwise commonly used GB-seconds.

4.4. IBM OpenWhisk

Starting in February 2016, IBM OpenWhisk was the first open source FaaS, followed by
Microsoft with its Azure Functions later. The runtime code is available at GitHub[11] under
Apache 2.0 license. IBM OpenWhisk has two price modes, per demand or associated to an IBM
BlueMix plan. OpenWhisk supports JavaScript, Python and also adds a compatibility with Swift,
the Apple programming language. So far, it is the only service that implements this language and
it could be interesting for iOS developers. Another feature that excels this service is the
possibility of using Docker containers to run any function or the native implementation of
artificial intelligence service, IBM Watson.

Figure 1. Mean RTTs when the response includes the random generated string by the function. Azure
Functions: blue line, IBM OpenWhisk: black line, AWS Lambda: orange line, Google Cloud Functions: red
line

20 Computer Science & Information Technology (CS & IT)

Figure 2. Mean RTTs when the response has an empty body. Azure Functions: blue line, IBM

OpenWhisk: black line, AWS Lambda: orange line, Google Cloud Functions: red line

5. EVALUATION

Table 1 summarizes all features of all services that have been described in this paper; for a more
detailed evaluation, a simulation has been done. Therefore, a small JavaScript function which
generates some computer processing by the calculation of random strings was programmed.
JavaScript, being the most supported programming language, was chosen as function
programming language. Besides, one point has to be considered during the simulation. At the
beginning, we considered as one of the simulation´s parameters the usage of the closest server to
our location (i.e. Austria). Unfortunately, OpenWhisk and Google Cloud Functions are still not
available in Europe, so all platform simulations had to be done by using servers located in the
United States (US). Azure Functions, Google Cloud Functions and IBM OpenWhisk are located
in the south central US, Amazon Lambda in the east.

The simulation consists of a client which sends HTTP requests to trigger the FaaS function.
Starting with no requests, the requests rate per second increases every ten seconds by adding ten
more requests per second. At the end of the simulation (after five minutes), the request rate is 300
req/s which represents a linear increase rate. The reason for increasing the simulation requests is
to see how the platform scales when more simultaneous requests trigger the function. The figures
show the mean time of the Round-Trip Times (RTT) the platforms give in two determined cases.
Figure 1 depicts the mean RTTs when the response includes the random generated string by the
JavaScript function. Figure 2, on the other hand, shows the mean RTTs when an empty response

Computer Science & Information Technology (CS & IT) 21

body is given. These two cases have been chosen to see how the body (approximately 80KB)
response affects to delays.

All four platforms depict stable behavior with just some peaks at the moment before the platforms
scale themselves. The peaks are especially visible in the case of Google Could Function when it
scales itself as being clear. Azure Function gives the best performance, both with and without
response body, which is always around 500ms; on the other hand, IBM OpenWhisk provides the
worst values which are always higher than 1000ms. Amazon Lambda provides a good RTT
performance when there is no response body in the request, but it is worse once the randomly
generated string is included in the response body and more requests are sent. This may be the
result of the required configuration of the API Gateway to enable the HTTP trigger on the
Lambda platform. Google Cloud Functions does not present a good performance once the body is
included in the response, but the behavior is similar to Azure or Lambda when the response body
is empty. One point is especially interesting: all figures show a peak when the simulation starts
but stable themself once the simulation continues, which could mean that the platforms need a
small period of time to initiate.

According to all analyzed data, the Azure Function platform offers a better performance and
supports more programming languages. Moreover, the price is the same compared to the closest
competitor, AWS Lambda. IBM OpenWhisk yielded a worse performance but is cheaper than the
other platforms and the compatibility with Docker containers, Swift and IBM Watson could be
interesting features for some developers. Finally, Google Cloud Functions presents a middle point
in features, performance, and price to the others competitors.

6. CONCLUSION

The paper gives an overview and analyses on the current state-of-the-art of serverless cloud
architecture. Afterwards, a comparison between the most used FaaS platforms was described in
which some parameters were analyzed. These parameters will be used in the future to choose the
most suited platform for our requirements. This paper is a basis which will be continuously
updated as an extended live document to reflect the changes that may occur in the future on these
platforms. The next step will be a more technical comparison of the platforms in a real life
scenario, where more precise requirements in delays, programming languages and price are
given.

ACKNOWLEDGMENT

This research was partly funded by the Comet-Project DeSSnet- Dependable, secure and
timeaware sensor networks. The K-Project DeSSnet is funded within the context of COMET –
Competence Centers for Excellent Technologies by the Austrian Ministry for Transport,
Innovation and Technology (BMVIT), the Federal Ministry for Digital and Economic Affairs
(BMDW), and the federal states of Styria and Carinthia. The programme is conducted by the
Austrian Research Promotion Agency (FFG).

REFERENCES

[1] S. Tilkov, “The modern cloud-based platform,” IEEE Software, vol. 32, no. 2, pp. 116–116, Mar

2015.

22 Computer Science & Information Technology (CS & IT)

[2] A. Sill, “The design and architecture of microservices,” IEEE Cloud Computing, vol. 3, no. 5, pp.76–
80, Sept 2016.

[3] H. Zeiner, M. Goller, V. J. Expósito Jiménez, F. Salmhofer, and W. Haas, “Secos: Web of things

platform based on a microservices architecture and support of time awareness,” e & i Elektrotechnik
und Informationstechnik, vol. 133, no. 3, pp. 158–162, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00502-016-0404-z

[4] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach for the internet of things,”

in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA), Sept 2016, pp. 1–6.

[5] C. Fetzer, “Building critical applications using microservices,” IEEE Security Privacy, vol. 14, no.6,

pp. 86–89, Nov 2016.

[6] A. Singleton, “The economics of microservices,” IEEE Cloud Computing, vol. 3, no. 5, pp. 16–20,

Sept 2016.

[7] B. Wagner and A. Sood, “Economics of resilient cloud services,” in 2016 IEEE International

Conference on Software Quality, Reliability and Security Companion (QRS-C), Aug 2016, pp. 368–
374.

[8] P. Sbarski and S. Kroonenburg, ”Serverless Architectures on AWS”. Shelter Island, New York:

Manning Publications Co.,2017.

[9] M. Roberts. (2016, Aug.) “Serverless architectures”.ThoughtWorks, Inc. [Online]. Available:

http://martinfowler.com/articles/serverless.html [Accessed: 02- 05- 2018]

[10] Microsoft Corporation, “WebJobs.Script”. [Online]. Available:
 https://github.com/Azure/azurewebjobs-sdk-script. [Accessed: 02- 05- 2018]

[11] IBM Inc., “OpenWhisk”. [Online]. Available: https://github.com/openwhisk/openwhisk. [Accessed:

02- 05- 2018]

AUTHOR

Víctor J. Expósito Jiménez studied telecommunications engineering at the University
of Seville (Spain) and Graz University of Technology (Austria). Since 2012, he works
at JOANNEUM RESEARCH in which his main topics have been related to Internet of
Things and Cloud Computing. During these years he was one of the people in charge
of the development of a 'Web of Things' application platform, designing the
architecture and core components. Moreover, he has worked in several projects in
different topics such as RFID, wireless sensor networks, and robotics.

Herwig Zeiner is key researcher for Industrial Internet. He was project manager and
coordinator for JOANNEUM RESEARCH of several projects. His research interests
are time-aware data-analytics in industrial applications, distributed service-oriented and
event driven applications, data driven applications by using stream analytics, as well as
intelligent feature extraction techniques and different data mining-methods for event

streams. He is also an evaluator of the European Commission.

