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ABSTRACT 
 
A significant amount of data is generatedand could be utilized in order to improve quality, 

time, and cost related performance characteristics of the production process. Machine 

Learning (ML) is considered as a particularly effective method of data processing with the 

aim of generating usable knowledge from data and therefore becomes increasingly relevant in 

manufacturing. In this research paper, a technology framework is created that supports 

solution providers in the development and deployment process of ML applications. This 

framework is subsequently successfully employed in the development of an ML application for 

quality prediction in a machining process of Bosch Rexroth AG.For this purpose the 50 

mostrelevant features were extracted out of time series data and used to determine the best 

ML operation. Extra Tree Regressor (XT) is found to achieve precise predictions with a 

coefficient of determination (R2) of constantly over 91% for the considered quality 
characteristics of a boreof hydraulic valves.  
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1. INTRODUCTION 
 

Due to the digitalization of manufacturing companies, an increasing number of machine tools 

are connected – the manufacturing process is mappeddigitally [1, 2]. The analysis of the 
recorded process data allows for measures to improve quality, time, and costs [3]. Therefore, a 

considerable amount of data is generated, on basis of which decisions often have to be made 

correctly and in real time [4]. However, large amounts of data and different data sources 

significantly increase the complexity of the evaluation. Commonly programmed software 
encounters limitations when processing large amounts of data while facing the high complexity 

of the application environment. For some problems, however, no algorithm can be used, since 

an infinite number of scenarios is conceivable and not all variations can be covered rule-based 
[5, 6]. Given the currently high level of capacity utilization and a thoroughly optimized 
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production, further efficiency increases are likely to be possible only through the introduction 

of completely new technologies. 
 

ML is known as the field of study that gives computers the ability to learn without being 

explicitly programmed and is considered as particularly effective method of data processing 

with the aim of generating usable knowledge from data [7]. ML systems have the potential to 
capture complex correlations instantaneously from unstructured data, constantly improve 

analyses and dynamically adapt to external environmental conditions, which is why they are 

regarded as particularly promising to further optimize the production process [7-9]. ML 
applications therefore bear the potential to further increase efficiency in the manufacturing 

industry and thus ensure the attractiveness of production locations in high-wage countries [4]. 

ML as a result is becoming increasingly relevant and is being applied to the manufacturing 

process. 
 

However, there is the challenge that ML as a still rather novel technology in the manufacturing 

industry is relatively unknown and untested [9]. It is therefore difficult for potential solution 
providers to fully assess the technology potential, identify relevant applications in the 

manufacturing industry and thus develop functional solutions to relevant problems. Hence, a 

framework that supports solution providers in the development process and deployment of ML 
applications is needed. The first goal of this research paper is to develop a multi-layered 

structure that can be used to develop ML applications. The second goal is to develop an 

application for quality forecasting on basis of the multi-layered structure. 

 
Following on from the introduction, Chapter 2. discusses in depth the subject area of ML in 

manufacturing. In this section, among other things, a framework for applying ML in 

manufacturing is developed and a use case from Bosch Rexroth AG is described in order to 
finally select an appropriate path in the framework regarding the specific technology demands 

of the use case investigated. Chapter 3. deals with the data collection process, the feature 

extraction, importance, and selection as well as the specific ML operations, their performance 
results, and evaluation. Chapter 4. concludes this research work and refers to special challenges 

and future research-related potentials. 

 

2. MACHINE LEARNING IN MANUFACTURING 
 

2.1. Framework for Applying ML in Manufacturing 
 

According to the opinion of SCHUH & SCHOLZ, ML represents the most important among 
many working areas of artificial intelligence such as e.g. Image Processing and Vision or 

Natural Language Understanding [9-11]. At this point in time, ML can be interpreted as a rather 

diverse bundle of technologies. The subject area is still much disorganized. A rather 
unstructured and partial discussion revolves around different aspects of the technology at 

different levels [9]. The necessity of the development of such a framework has already been 

widely demonstrated. Also the different technology layers required for the description of ML 

applications are derived. Within this research paper the framework will be enriched with more 
detailed technology information regarding the various decision alternatives per layer as well as 

a decision sequence along the different layers during the development of ML applications [9]. 

The framework is designed to provide an easily accessible theoretical overview of the subject 
area, to accompany researchers as well as solution providers during the implementation process 

and to support the development of solutions. The framework was developed in vertical reading 

direction and claims to classify problems from the ML domain into these layers. By the defined 
processing of the individual layers the selection options are narrowed down more and more, 

whereby only certain classes and decision alternatives of the following layer are selectable. 
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Gradually, the decision alternatives of the framework become more granular, which makes the 

classification of the problem more thorough. A classification according to ML learning 
strategies is employed because all applications learn in a certain way and specific data types are 

related to these learning strategies such as e.g. supervised learning, unsupervised learning and 

reinforcement learning [12]. ML learning strategies are based on the natural learning 

mechanism of humans [13]. Supervised learning involves learning from examples. Each set of 
input (features) is labeled with a specific output. After each processed sample, the internal 

parameters are adjusted (e.g. Neural Networks (NN): weights, Decision Trees (DT): branches, 

Support Vector Machines (SVM): hyperplane etc.) to minimize a certain error function, often in 
the sense of the mean square error. In unsupervised learning, only the available data are used to 

recognize correlations and patterns without defined target classes [13]. Reinforcement learning 

can shortly be described as the mapping from situations to actions to maximize a scalar reward. 

The learner is not told which action to take, but instead must discover which action yields to the 
highest reward by testing [14]. ML tasks such as e.g. classification, regression, and clustering 

refer to the ML learning strategies and take the specific data formats of the problem into 

account [12]. Supervised learning can be divided into regression and classification tasks, while 
unsupervised learning is mainly used for clustering tasks. In the case of regression problems, 

intervalscaled data are predicted, whereas in the case of classification problems, discrete 

characteristics such as good or bad can be predicted. The clustering task can be compared with 
that of the classification, but the target classes are derived from data and are not defined 

beforehand [13]. ML operations such as e.g. Random Forest (RF) [15], (DT) [15], and (NN) 

[16] represent the definite procedures which are used for the analysis. They can be described by 

their internal model structure (e.g. algorithm, hyper parameters, loss function and other general 
properties). Each ML operation thereby has an individual structure. ML implementation 

procedures determine which methodical procedure (e.g. KDD (knowledge discovery in 

databases), Crisp-DM (cross-industry standard process for data mining), and SEMMA 
(acronym describing the individual steps of the method)) which programming language (e.g. R 

and Python) and library (e.g. Scikit-Learn, TensorFlow, Keras, and Theano) should be used 

[17-19]. The development of methodologies, software tools and languages serve as the 
standardized approach for industrial applications of data processing [20]. Methodical 

procedures support the systematic implementation of real-life ML applications. The selection of 

the contents from this layer depends on the use case. For the development of a ML application 

the layers are processed and defined in the sequence presented here. The well founded 
examination of the fundamental literature and implemented ML applications allows for an 

empirical inductive conclusion on the following features per layer and suggests an integration 

of the layers into the following decision sequence. The wide variety of literature sources 
presented above support this classification [9-20]. 
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Figure 1.  Framework for applying ML in manufacturing  

 

The specific benefit of the framework for the user is that each analysis attempt using ML 

represents a unique path in the framework. Established paths in the framework can serve as a 

blueprint for a potential future application design. Thus, less development time may be needed 

to solve certain problems. In addition, there are more validated and proven solution options to 
problems, which ultimately leads to lower overall opportunity costs for solution providers. 

 

2.2. Description of the Use Case 
 

The manufacturing process considered within this research is an integral part for the serial 
production of hydraulic valves at the Bosch Rexroth AG. Hydraulic valves are characterized by 

bores with tolerances of only a few microns to enable seal-less fits and to prevent oil leakage. A 

valve is machined first by a milling machine, assembled and finally tested, see Fig. 2. Slight 

anomalies in the production process can lead to unacceptable quality deviations causing high 
scrap rates and financial losses. To guarantee the required quality of bores of a valve, sampling 
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inspection after the machining process (approx. 1% of a batch) and end of line testing (100% of 

a batch) are applied in industry. Both quality control methods lead to indirect costs and a high 
latency between the machining of a valve and its measurement results. Therefore, feasible and 

affordable in-process quality control methods are desired from manufacturing companies. The 

so gained increased transparency over the machining process is used to make adjustments as 

soon as the required quality is not reached. Process data from the machining process and ML 
operations are used to predict the quality of one of the most quality critical bores of a valve.  

 

 
 

Figure 2. Manufacturing process of a hydraulic valve with quality surveillance 

 

The quality of a bore is determined by dimensional (diameter) and locational (concentricity) 

quality characteristics. Quality deviations are caused by wear on cutting tools that are used to 

drill and to ream bores. Tool wear leads to increased cutting forces and torque, which can be 
measured directly from the drives of a milling machine in form of the motor current and torque 

[20, 21]. This indirect measurement approach together with ML operations is the only 

economical technique to obtain quality predictions with a latency close to zero when facing 
industrial conditions. Such a quality surveillance detects quality deviations in an early 

manufacturing state and enables cost and resource savings. 

 

2.3. Selection of the Right Path in the Framework Suitable to the Use Case 
 
ML is considered as one working area of AI that can take the manufacturing industry to a next 

level. In order to cope with the use case considered in this research, technologies from the 

context of ML should therefore be used. First the learning strategy supervised learning is 

chosen because the quality of the considered bore of each valve is available and less training 
data are required to build a model. This leads to a less time-consuming data collection process. 

In addition, the diameter and concentricity of the bore have to be expressed as numerical 

values, which defines the ML task as a regression task. For the ML implementation procedure 
the method CRISP-DM is chosen because an understanding of the business and the data already 

exists and data preparation is required in form of feature extraction and selection. Due to 

modelling and evaluation the best ML operation suitable for the use case is determined and 

finally deployed. The lists of ML operations helps to choose the right category of algorithm 
regarding a regression ML task. For the implementation the programming language Python and 

the library Scikit-learn in combination with the distribution Anaconda are used. These choices 

determine the path in the framework to accomplish the quality prediction of machined 
workpieces. 
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3. METHODOLOGY 
 

Fig. 3 summarizes the methodology of this research to obtain a quality prediction for each 

workpiece from the data of the related machining process. Each process step is described in 
detail in the following subsections.    

 

 
 

Figure 3. Approach to obtain a quality prediction from machining data 
 

3.1. Data Collection Process 
 
The process data were collected during the serial production of hydraulic valves from a milling-

machine. To operate a milling-machine a numerical control unit (NC) is used, which processes 

data from sensors integrated into the machine and the drives. The measured actual values 
obtained by sensors give a direct feedback on the cutting conditions and are used to control the 

machine. These machine-internal data were directly collected with a frequency of 1,000Hz from 

the NC and are the input data for the feature extraction. Selected features are used to make 

predictions with ML operations. The stored process data were the actual torque values of the 
drive of the z-axis as well as the spindle, the actual position values of the x-, y-, and z-axis and 

also the actual speed value of the spindle. Process data from a total of 160 workpieces were 

collected during the machining. Fig. 4 exemplary depicts the actual torque value of the spindle 
for the second tool, which are used to machine the considered bore. 

 

 
 

Figure 4. Visualization of process data of the 2nd machining process 
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In addition, for each workpiece the dimensional and locational quality characteristics 

were measured representing the target and output parameter for the ML operations. The 

measured characteristics are the diameter and concentricity of a bore.  

 

3.2. Feature Extraction 
 
To reduce the complexity and volume of the collected time series data as well as to accelerate 

the training and test process of the ML operations a feature extraction is applied. The aim is to 

extract characteristics in order to accordingly represent the time series with a reduced set of 
features. General features (e.g. the shape of the signal) and statistical features (e.g. mean or 

standard deviation) are very common to represent time series data. However, both forms of 

features often do not contain all the information needed to expose dynamical time series data. 
Therefore, VUNUNU ET AL. also analyzed the frequency domain to identify additional patterns 

in the data [22]. In this paper, 63 methods are used to calculate 794 features for each machining 

operation with the tsfresh library. For each process parameter a total number of 2382 features is 

obtained due to the three subprocesses [23]. The extracted feature can be divided into three 
groups as shown in Fig. 5. 

 

 
 

Figure 5. Visualization of process data of the 2nd machining process 

 

3.3. Feature Importance and Selection 
 

Irrelevant features can lead to weak prediction performances and increased computational costs. 

In a huge set of features the probability of containing irrelevant features is high and therefore a 

feature selection is recommended. The determined importance of each feature increases the 
interpretability of a feature in the related use case and enables to select the features that 

contribute most to an accurate and efficient prediction [24]. In this paper, the RF technique is 

used to determine the feature`s importance. The RF algorithm uses subsets of the training data 
to construct each of the tree configurations. Therefore, an independent test set is not required 

for the evaluation of the feature ranking. The feature importance is obtained by comparing the 

prediction errors after permuting the feature`s values of all examples [25]. Feature importance 
of the RF is well suited for datasets with a small sample and big feature size [26]. The 

importance of all features is calculated and the features with the lowest importance values are 

excluded from the data. The features are ranked in descending importance order as shown in 

Fig. 6. The three most important features are the low frequency fast Fourier transformation 
(FFT) coefficient of tool 3 (8.97%), the approximate entropy of tool 2 (7.93%) and the high 

frequency FFT coefficient of tool 2 (6.79%). 
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Figure 6. The 30 most important features 

 
To decrease the model complexity and the computational costs the 50 most important features 

are selected. For the selection of the most relevant features a systematic approach is considered. 

This procedure answers the question of how many features are needed to maintain the initial 
accuracy. The initial accuracy is determined by a grid-searched operation based on all features. 

The individual features ranked by importance are made incrementally available to the operation 

as a training set. First, the operation is trained with the highest ranked feature. Then, the next 

important feature is inserted into the feature table and the procedure is repeated. For each 
feature subset the R2 is evaluated with a five-fold cross validation. These steps are performed 

for every feature in the dataset. The mean and the standard deviation of the results for the first 

50 important features are shown in Fig. 7. 
 

 
 

Figure 7. R2 plotted over the number of selected features 
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It can be stated that already with the ten most important features a R2 of 91.39% is reached. 

Additional features do not lead to an extraordinary increase in accuracy or a saturation 
behavior, which is possibly due to the small number of samples. By adding more features, the 

accuracy decreases (not shown here). Thus, the number of features which serve as inputs to the 

ML operations is set to 50. 

 

3.4. Machine Learning Operation 
 

An artificial neural network (ANN) is a computational model consisting of a collection of 
artificial neural neurons inspired by the brain of living beings. All those neurons are linked via 

interconnections to form a large network. Information are insert into the network via input 

neurons and are conveyed within the network to provide results to the output neurons [27, 28]. 
The output of each neuron y is determined according to equation (1) by its activation function ϕ 

that activates the neuron if the weighted sum of n inputs xi multiplied with the related weights 

wi is above a particular threshold u [28]. 
 

𝑦 = ϕ(∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

− 𝑢) (1) 

 
Ensemble methods combine several ML algorithms to achieve a higher prediction accuracy. 

Often these methods are tree-based like Random Forest (RF) and Extra Trees (XT). Random 

Forest, developed by BREIMAN, is a ML operation for classification and regression problems 
[15]. An ensemble of decision trees is used to obtain the final prediction y by averaging the 

predictions yt of all trees T for a given dataset x as denoted in equation (2). To build a single 

tree bagging is applied that describes the random selection of a sample from the original 

training dataset. RF do not overfit due to bootstrap aggregation, can reach highly accurate 
predictions, and are fast to train [29, 30]. The ML operation XT differs from RF in two main 

points to grow the trees. First, XT uses the entire training dataset instead of bagging. Second, 

splitting-points are chosen fully randomly to split a node [31]. In this paper the RF and XT, as 
regression tree approaches, are used to predict numerical values for the quality characteristics.  
 

𝑦(𝑥) =
1

𝑇
∑𝑦𝑡(𝑥)

𝑇

𝑡=1

 (2) 

 
Support Vector Machine (SVM) is a ML operation for classification and regression tasks. Input 

data are mapped to a high dimensional feature space where the prediction task gets linearly 

separable. The support vector kernel together with the number of support vectors and its 
parameter determine the decision function of SVM [32, 33]. Further explanation can be 

obtained from STEINWART & CHRISTMANN as well as VAPNIK [33, 34].      

 

For the considered ML operations ANN, RF, XT, and SVM the optimal hyperparameters have 
to be determined. For this purpose, a parameterspace is set up in which different variations of 

hyperparameters are examined in a grid and the R2 of each combination is measured. For the 

individual operations, both the absolute and the repetitive accuracy are calculated. Thus, the 
best model configuration obtained from the grid search can be determined from the results 

shown in Table 1. 
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Table 1. Results of Gridsearch 

 

ML operation R2 [%] (absolute) R2 [%] (repetitive) 

Artificial Neural Network (ANN) 55.13 ± 5.30 51.63 ± 3.20 

Random Forest Regressor (RF) 91.28 ± 2.81 89.59 ± 0.82 

Extra Trees Regressor (XT) 93.64 ± 0.65 92.81 ± 0.18 

Support Vector Machine Regressor (SVM) <0 <0 

 

The highest R2 can be obtained for the XT Regressor. The associated standard deviation is the 
lowest of all ML operations, which proves the suitability for this task. The hyperparameters and 

other properties for the best operation are listed in Table 2. 

 
Table 2. Extra Trees Regressor summary 

 

Parameter Value 

Splitting criterion MSE 

Max. features to condsider best 

split 
50 

Min. number of samples to split 3 

Number of trees 10 

Mean fit time 0.115 sec 

Mean score time 0.103 sec 

R2 of training data 99.95 ± 0.02% 

R2 of test data 93.64 ± 0.65% 

 

3.5. Results and Evaluation 
 

The prediction accuracy reached with the described ML operation (XT) is evaluated using the 

R2, the mean squared error (MSE), and the mean absolute error (MAE). Table 3. summarizes 
the results for the two predicted quality characteristics diameter and concentricity. The diameter 

is predicted with a higher precision compared to the concentricity. The MAE is with 0.26 µm 

very little and the MSE is close to zero. For the concentricity the MAE and MSE are much 
higher than the obtained results for the diameter but the predicted values are still precise enough 

for the utilization in the descripted use case.  
 

Table 3. Extra Trees Regressor summary 

 

 Diameter Concentricity 

R2 [%] 93.75 91.66 

MSE [mm2] 1.2x10-7 0.008 

MAE [µm] 0.26 22.91 

 

That fact that the desired quality characteristics can be predicted very reliably with XT 

can be retrieved from the high R2 (Table 3.) as well as in the graphical comparison of 

the predicted and the measured values in Fig. 8.   
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Figure 8. Graphical representation of the predicted and measured values for (a) diameter and (b) 

concentricity. 

 
To diagnose the systems behavior the learning curve is reviewed. The R2 is constantly high for 

the training data, which is typical for an XT. However, a learning effect can still be observed as 

the R2 improves with an increasing number of training examples from around 70% to 94%. An 
R2 of 100% is hardly achievable, since the learning curve stagnates. In this case a saturation did 

not occur. Fig. 9 depicts the learning curve. The coefficient of determination (R2) is plotted with 

an increasing number of training examples. It can be observed that the accuracy increases with 

an increasing number of training samples, which proves that the XT is becoming continuously 
accurate. 

 

 
Figure 9. Learning curves of Extra Trees Regressor 

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

Measured value [mm]

P
re

d
ic

te
d

 v
al

u
e 

[m
m

]

17.991

17.992

17.993

17.994

17.995

17.996

17.997

17.991 17.992 17.993 17.994 17.995 17.996 17.997

Measured value [mm]

P
re

d
ic

te
d

 v
al

u
e 

[m
m

]

(a)

(b)

Training examples

C
o
ef

fi
ci

en
t 

o
f 

d
et

er
m

in
at

io
n

 (
R

2
)

20 40 60 80 100 120

1.0

0.8

0.6

0.4

0.2

0.0

training R2

test R2



200                            Computer Science & Information Technology (CS & IT) 

4. CONCLUSION 
 

Engineers in the manufacturing industry often have only limited knowledge of using and 

applying AI or ML to solve problems in their business. Vice versa have data scientists only 
basic expertise concerning manufacturing processes. The framework presented in this paper 

enables engineers to gain an overview of AI and ML and its related subfields. The framework 

guides through the ML implementation process and depicts potential tools and approaches for 
the application of ML in the manufacturing industry. For a specific use case from the Bosch 

Rexroth AG the engineers applied the framework successfully. All required decisions were 

taken along a chosen path in the framework which finally led to a ML operation that predicts 
the quality characteristics of a bore very precisely. A feature extraction and selection is 

mandatory to reduce the complexity of the time series data as well as the computing time and to 

increase the prediction accuracy. From the 794 extracted features, 50 features were determined 

as significant and were considered for the prediction models. The predictions for the diameter 
and the concentricity of the considered bore were evaluated with the statistical criterions R2, 

MSE, and MAE. With a MAE of only 0.26 µm for the diameter and 22.91 µm for the 

concentricity the prediction errors were very low. Hence, XT can be used to predict the quality 
of bores on basis of process data close to real time. This direct feedback regarding the 

manufacturing process leads to scrap avoidance, resource savings and cost reductions. 

Consequently, the application of ML is a further contribution to secure production plants in 

high-wage countries.  
 

In the future, we will gather more data to increase the training samples for the ML operations in 

order to improve the prediction accuracy. With more training samples ML operations like ANN 
or SVM will potentially lead to acceptable results, too. Furthermore, we are looking for further 

use cases where we can apply the descripted framework to achieve improvements by 

implementing ML. 
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