
Dhinaharan Nagamalai et al. (Eds) : COSIT, AIAPP, DMA, SEC - 2019
pp. 101–113, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90209

PARALLEL VERIFICATION EXECUTION WITH

VERIFY ALGEBRA IN A CLOUD ENVIRONMENT

Kan Luo1 Siyuan Wang1 An Wei2 Wei Yu1 Kai Hu1

1School of Computer Science and Engineering, Beihang University, Beijing,
China

2China Mobile (Hangzhou) Information Technology Co.,Ltd

ABSTRACT

Soft-as-a-Service (SaaS) is a software delivery model that contains composition, development
and execution on cloud platforms. And massive SaaS applications need verifying before
deployed. To get the verify results of a large quantity of applications in a tolerate time, verify
algebra (VA) is used to cut down the number of combinations to be verified. VA is an effective
way to acquire the verify statue by using previous results. In VA, the verify result is calculated
without knowing the process of verification. In this way, the verification task can be distributed
to servers and executed in any order. This paper proposes method called component
disassembly tree to decompose a complex SaaS application. And designs a parallel verification
framework in cloud environment. The Optimization of execution is discussed. The proposed
parallel schema is simulated in MapReduce.

KEYWORDS

Verification, SaaS, Components Combinations

1. INTRODUCTION

Software as a Service (SaaS) is a new way for software development and delivery based on the
cloud platform. In SaaS, MTA (Multi-Tenancy Architecture) [2] is a key feature. It allows all
tenants software to share the same code on the basis of configuration data stored in databases or
data stores. Each element represents a unique component in the SaaS system, and a set of
components represents a tenant application. Tenants customize their applications using
components stored in the SaaS database according to their individual requirements. However, a
tenant application can be insecure or vulnerable. For those applications, some interesting
properties, such as dead-lock and safety need to verifying before deployed on the cloud. With the
number of components in database increasing, the workload of verification grows up greatly. For
instance, supposing there are 4 layers (GUI layer, workflow layer, service layer and data layer)
has 105 components respectively and there will be 1020 (105*105*105*105) possible combinations
in total. It is impossible to get 1020 different application verified one by one. Combinatorial
verifying is new verifying technique to verifying component-based applications. It verifies
combinations among components which has been verified individually.

Formal method can be applied in a cloud environment leveraging the computing power offered.
We have proposed the concept, VaaS (Verification-as-a-Service) on MTA, a scalable cloud-based
on-demand service that uses formal models for verification. The VaaS on MTA can verify SaaS
software and address behaviour, performance, and attribute aspects of software models, while it
has features of SaaS software such as automated provisioning, scalability, fault-tolerant

102 Computer Science & Information Technology (CS & IT)

computing, and concurrent processing[2]. In a cloud environment, different combinations can be
allocated to different processors for execution in parallel. One simple way to perform
combinatorial verifying in a cloud environment is: split the verification tasks, then allocate the
tasks to different servers in cloud, finally summary the results. However, this is not efficient.
While computing and storage resources have increased significantly, the number of combinations
to be considered is still too high. Verifying all of the combinations in a SaaS system with millions
of components can consume all the resources of a cloud platform.

In our previous work, we study the rule of merging the verifying status of combinations and
propose a Verify Algebra System [17] to cut down component combinations to be verified. Verify
algebra is an algebraic system, which defines the five statuses of verify results and four
operations of merging previous verify results. According to the combinatorial structure, our
proposed VA can reduce the number of combinations to be verified by using existing verification
statuses and then getting the results of unknown statuses by algebraic computation. In VA, the
verify status record the verify result of a certain combination. we calculate the verify result
without knowing the process of verification. And the verify results are merged according to the
rules of VA and the results will not be affected by the processing order and merging order. In this
way, we propose a parallel and asynchronous computing mechanisms such as MapReduce,
automated redundancy and recovery management, automated resource provisioning, and
automated migration for scalability.

Our contribution can be summarized as: we put forward a schema that leveraging Formal Method
with the computing power offered by cloud environment to check software correctness. Further,
we propose a new verification framework with VA and shared databases. All verify results are
saved in shared databases. the process of verification is designed where previous verifying results
are used to get unknown combinations status.

 This paper is structured as follows: Section II discusses the related work; Section III introduces
the component disassembly tree. Section IV and Section V discusses VA parallel execution and
analysis; Section VI illustrates TA experiments using the proposed solutions; and Section VII
concludes this paper

2. RELATED WORK

2.1. Verification-as-a-Service

VaaS on MTA has been designed in[1]. VaaS is an architecture that can be used to verify models,
similar to SaaS, beneficial from the computing power offered in a cloud. A VaaS hosts
verification software in a cloud environment, and these services can be called on demand, and can
be composed to verify a software model. In VaaS, Bigragh is selected as the modelling language
for illustration as it can model mobile applications. A Bigraph models can be verified by first
converting it to a state model, and the state model can be verified by model-checking tools. The
VaaS services combination model and execution model are also presented in[8].

In a SaaS, tenants can have their customized applications stored in the SaaS databases, and often
the applications are not stored as a unit in the databases. Instead, each tenant application is
decomposed into its GUIs, workflows, services, and data components, and each component is
stored in the database together with components of the same kinds[9]. For example, a SaaS GUI
database contains all the GUI components used by all the tenants. The MTA VaaS design follows
the SaaS design, for example, it has databases to store verification software, models to be
verified, and verification results; it provides customization support; etc.

Computer Science & Information Technology (CS & IT) 103

Essentially, an MTA VaaS is like a SaaS except the principal task is for software verification
rather than general computing. A VaaS also has following unique features:

 Only formal verification software is stored in a VaaS;
 As formal verification often involves model transformation, thus a VaaS may contains

transformation software;
 A VaaS also contains software for parsing formal models; and
 A VaaS may support incremental verification where subsystems are verified before whole

systems are verified. Support for incremental verification includes storing model
architecture and intermediate verification results, and algorithms to select only those
compositions or combinations that need to be verified.

A tenant can develop a new verification application, i.e., a tenant application, by identifying and
reusing GUIs (G), Workflows (W), Services (S), and Data components (D) in the VaaS database.
All selected components can be linked, and then compiled to produce executable code.

In VaaS, however, there are too many compositions to be verified. Because the number of
verification tasks will grow exponentially as complexity of tenant application grows. To address
this issue, verification algebra rules are introduced into VaaS Architecture.

2.2. Verify Algebra

In VA, each combination can be in one of the following five states:

 Infeasible (X): some components are not permitted to be combined. For example, there
would be a conflict when two components do same things but cause different results such as
two GUI components, one of which paints the background BLUE but the other paint RED.

 Failed (F): Verification to combination on a certain property is not passed.

 Passed (P): Verification to combination on a certain property is passed.

 Irrelevant (N): For some combinations which are impossible to be created, but is still
feasible to be verified, so there is no need to verify these combinations.

 Unknown (U): the status of a combination is certain but not currently known.

Verify algebra method is capable of reducing the number of combinations to be verified by using
existing verification status and then getting the results of unknown status by algebraic
computation. To be specific, the verification state of one combination on a certain property is

 and the state of another combination is , we can determine the
 from and . To do this, four kinds of binary

operations are defined as follows:

(1) Rules for operator ⊗

One combination contains many different sub-combinations. The status of one combination is
composed by merging the result of its sub-combinations. The operation ⊗ merges the passed
sub-combinations.

104 Computer Science & Information Technology (CS & IT)

(2) Rules for operator ⊕

The operation ⊕ merges the failed sub-combinations
.
(3) Rules for operator ⊖

the operator ⊖ combines part of the proper subsets of one combination.

(4) Rules for operator ⊙

The operator ⊙ combines all the proper subsets of one combination.

Fig. 1. Combination results

2.3. Workflow Patterns

In SaaS, components are combined by single or multi patterns. The combination patterns of
components are mainly expressed by the workflow. The pattern of workflow has been discussed
by Van Der Alast et al. in[13]. They classify workflow patterns into six categories, namely Basic
Control Flow Patterns, Advanced Branching and Synchronization Patterns, Structural Patterns,
Patterns involving Multiple Instances, State-based Patterns, and Cancellation Patterns. In the six
classes of workflow patterns, five patterns can be expressed by Basic Control Patterns.
Furthermore, tenant applications of multi-patterns in SaaS platform can be disassembled into
multi-tiered combinations that contains only the Basic Control Patterns. For this reason, emphasis
of analysing combination patterns will be put on Basic Control Patterns. There are five kinds of
workflow patterns in Basic Control Patterns.

 Sequence: The sequence pattern is the most common pattern used to model consecutive steps
in a workflow process. A component in TA is enabled after the completion of another component
in the same workflow pattern process, as Error! Reference source not found. (a).

 Parallel Split: Multiple components are simultaneously enabled after the completion of
another component, thus allowed to be executed in parallel or in any order, as Error! Reference
source not found. (b).

 Synchronization: Synchronization is a point in workflow process where multiple parallel
components converge into one single component, thus synchronizing execution of multiple
components, as Error! Reference source not found. (c).

 Exclusive Choice: One of several components is chosen based on a decision or workflow
control data in pattern of Exclusive Choice, as Error! Reference source not found. (d).

Computer Science & Information Technology (CS & IT) 105

 Simple Merge: The completions of two or more alternative components come together without
synchronization in pattern of Simple Merge. In other words, the merge will be triggered once any
of incoming transitions are triggered, as Error! Reference source not found. (e).

Fig. 2. Basic workflow patterns

3. COMPONENT DISASSEMBLY TREE

3.1. Abbreviation and Definition

TA: Tenant application
C: Component, a single component in SaaS databases, the basic unit in components combination.
Supposing that all single components are tested or verified to be correct.
Com: Combination, constructed by more than one component.

Definition Ⅰ: (Sub-Combination) If the components set comprises , it can be claimed

that combination is a sub-combination of combination . Sub-combination is defined
as .

Definition Ⅱ : (Similar Sub-Combination) If and the work flow pattern of

 is the same as , It can be said that is a similar Sub-Combination of .
Sub-Combination is defined as .

In practical applications, most TAs are under hybrid patterns. For Com under hybrid patterns, it is
complex to get its sub-combinations with same basic pattern and therefore, combination
verification algebra can be directly used in this case. To solve this problem, a method is proposed
that TA is disassembled and substitute by combinations with more simple patterns. In this
method, disassembly means splitting TA into several sub-combinations and substitution means
replacing atomic sub-combination with component.

The combination containing only one kind of workflow pattern is single-patterns combination.
Multi-patterns combination is the components combination that contains more than one kind of
Basic Control patterns. The rules of Single-pattern combination can be generalized to multi-
patterns. To do this, the component disassembly tree is proposed. Component disassembly tree is
a tree whose root node is TA itself and whose leaf nodes are components and other nodes of
which are sub-tenant applications or combinations of TA.

The component disassembly tree of TA shown above is shown in Error! Reference source not
found.

106 Computer Science & Information Technology (CS & IT)

Fig. 3. Component disassembly tree of TA

A method is designed to automatically disassemble workflow graph of TA to a component
disassembly tree. Supposed that the workflow graph has no circles and only has a source vertex
and a destination vertex. The process of the method is illustrated as follows.

StepⅠ: Initialize the component disassembly tree to contain a root with value TA.

StepⅡ: Find all paths of the workflow graph using DFS.

StepⅢ: Search paths from head and tail to find the same nodes. Make the nodes found to the
child nodes of root. And remove the nodes found from all paths. If the paths are empty, end
process. otherwise go to StepⅣ.

StepⅣ: Add a child of root with value Com

StepⅤ: Sort and then group the paths by first elements. For these groups, if a group only has one
path and the path only has one node, make the node to be a child of Com. Else, add Com a child
node with value Com, and regard this Com node as root and the group as paths, go to StepⅢ.

After component disassembly tree of tenants’ application is derived, the process of combination
verification algebra under hybrid patterns can be performed as follows:

Step1: Get component disassembly tree of TA.
Step2: Check if the depth of component disassembly tree is more than 2. If the depth is no more
than 2, it means that TA is under single pattern and go to Step5. Otherwise, go to Step3.
Step3: Choose leaf nodes which have same parent node from bottom of the tree. It is obvious that
their parent is sub-tenant application consisting of these leaf nods and the parent node is under
single pattern. Therefore, the verification status can be derived via the process represented in last
section. After that, remove these leaf nodes from the tree until the parent node has no child nodes
and its status is known.
Step4: Check if there is node at the bottom layer. If yes, continue Step3. Otherwise, decrease
depth of the tree by 1 and go to Step2.
Step5: the verification status of TA can be derived via the process represented in last section. End
the process.

Computer Science & Information Technology (CS & IT) 107

4. PARALLEL VERIFICATION FRAMEWORK

When tenant application is submitted to SaaS platform, component combination verification
service will use component combination algebra to verify if this application can satisfy some
specific property. When this system is verifying some combination, it may need to verify its sub-
combination, this may need tons of computing power, therefore, we design a distributed
verification framework base on component combination algebra to accelerate this process.

To use a distributed system to distribute the verification of application, we need component
combination verification transaction satisfy these properties to avoid impact between different
verification task or let failed verification result contaminate database of verification result.:

 Atomicity of verification task. The operations of a verification task either execute all or
execute none, it can’t execute only part of it. If some error occurs when execute these
operations, system should rollback to the initial state.

 Consistency of verification result. These component combination verification transactions
should keep system in consistence. A verification task execute at different node or time
should always produce same verification result.

 Isolation of verification task. No verification task could disturb other verification task’s
execution. Whether these tasks are executed parallel in different node or execute serial in
same node, it will always produce same result.

 Durability of verification task. After execution of a verification task, the result of this
verification task will store in database, it will not be rollback by system.

Client Master

VR0 VR1 VR2 VR3 VRn...

Worker Worker Worker...

VT0 VT1 VT2 VT3 VTn...

Verification Result

Dispatch Gather

Configuration

Database

Fig. 4. Parallel verification process

When define component combination verification transaction, we need decompose component
combination first. We define the smallest execution unit as component combination verification
task , multiple component combination task together constituted a component combination
verification transaction . System will execute these component combination verification task to
get component combination verification result . All component combination verification
results together constituted component combination verification result . The framework of this
system is show in the picture above. The definitions of these concepts are listed below.

Definition 1: A component combination verification task is a pair of combination model
and property , it can represent as .

108 Computer Science & Information Technology (CS & IT)

Definition 2: A component combination verification transaction is constitute of multiple
component combination verification tasks, it can represent as .

Definition 3: A component combination verification result is a tuple of component
combination model , verification property and verification status . It can represent
as:

Definition 4: A combination transaction’s verifications result is a set of CR, it can represent
as .

Start

Master node
read

configureation
file

Master node
generate

component
combination

tree

Master node
generate CT

Master node
dispatch tasks
from queue

Master node
choose a node

with low load to
execute task

Worker node
process CT

Worker node
reply CR

Master node
update

verification
result database

Master node
update

workers’s
status

Task
queue
empty

False

Master node
construct TR

End

True

Fig. 5. VA execution flow chart

In order to decompose tenant applications, we use component combination tree to define the
relation between components. After system convert user tenant application to a component
combination tree, it will use this tree to generate component combination verification task and
assign these tasks to different node of worker swarm to verify this application. Figure 10 shows
the procedure of this algorithm:

1. Master node read tenant application configuration file and parse component combination
tree from it, each node in component combination tree represent a component combination,
the component combination represent by leaf can’t be divide further, the component
combination represent by root node is the combination of whole tenant application.

2. Master node using property need to be verified and the component represented by leaf node
to construct a . Then master node will put these tasks into a priority queue, the lower the
depth of the leaf nodes, the higher the priority.

3. Master node extract component combination verification task from priority queue and
assign it to a worker node with low load. Worker node will send verification result to
master node after it finish verification.

4. Master node will use verification result to mark the verification status of corresponding
node, then delete this leaf node. Master node will also put the result into database. If the
verification status of leaf node will influence the verification status of parent node, it will
recursively mark the verification result of parent node, remove the subtree of parent node

Computer Science & Information Technology (CS & IT) 109

and abort all verification task associated with this subtree. Then go to step 5 if the
verification result of root node is confirmed, otherwise go to step 2.

Master node will use component combination result to construct a component combination
verification transaction result and send it back to user.

5. ANALYSIS

Whether using distributed system or a single computer system to verify a tenant application, it’s
possible to encounter a scenario which it only needs to verify one submodule then produce the
result of component combination verification transaction. But because of the low probability of
this situation, in most cases, it’s required to verify majority of component combination to
complete the verification of tenant application. Let the time of produce verification task from
tenant application configuration file as , average execution time of verification task as .

Assume we use component combination tree to break a tenant application into sub-component
combination, then generate component verification task from it. Using serial execution of
verification algorithm, it will cost

 (1)

If we use distributed component combination verification service to verify this application,
assume there is worker node. Because the master node needs to spend extra time to manage the
status of worker nodes, assume the overhead of this is . Then, the time use to verify this
application is

 (2)

From the above equation, it can be seen that the execution time of verification process depends on
the number of worker node in addition to the verification transaction. When the time of node
management is negligible, if the number of nodes is smaller than number of tasks, then the
verification time will decrease as the number of nodes increase, if the number of nodes is larger
than number of tasks, add more worker node won’t bring any improvement. Due to the large
number of verification task, master node needs to spend much time to distribute verification task
and manage worker node status, this cannot be ignored. If we use a distributed system to verify a
tenant application, adding more nodes will decrease verification time in the begging, but after
certain threshold, adding more nodes will increase the time of execution. We can calculate
will get minimum

 (3)

 (4)

Compared serial execution method with the parallel execution method, when the number of
verification task is large, using parallel method can significantly reduce the verification time.

6. EXPERIMENTS

The experiment is organized as follows: Firstly, verification of component combination in SaaS is
simulated; Then use the method proposed in this paper to decrease the quantity of combination to

110 Computer Science & Information Technology (CS & IT)

be formally verified; Finally, compare the quantities of combinations using this method with that
not using this method to prove the validity and efficiency of the method in this paper.

6.1. Environment of the Simulations

(1) Hardware Environment

The simulation performs is a Hadoop distributed computing environment constructed by several
virtual machines. A virtual machine is used as master node and the other seven virtual machines
are used as computing nodes. All VMs have same configuration which is one CPU, 2G memory
and 10G hard disk space.

(2) Software Environment

All nodes are deployed with Ubuntu Server 12.04 LTS as operating system and Hadoop 2.5.2 as
run-time environment of MapReduce and Apache HBase 1.0.1.1 as distributed database. The
combination verification algebra method proposed in this paper is implemented using Java
programming language.

(3) Related parameters

This experiment is designed by reference to EasySaaS Architecture proposed in[17]. Components
in the experiment are divided four classes: GUI components, workflow components, service
components and data components. The total number of components is 100, 30% of which is GUI
components, 30% of which is workflow components, 20% of which is service components, 20%
of which is data components. Each tenant application consists of ten components, four GUI

components, three workflow components, two service components, one data component，So
there are 4.22e11 possible combinations. The error rate is set to 0.1% and failing combinations
are randomly generated at the beginning of the experiment.

Before verification starting, all tenant applications are disassembled into combinations under
basic pattern, using Disassembly Tree proposed in section V. Table 1 indicates the number of
combinations decomposed from applications. Total workload is the number of combinations to
be verified for checking all applications on a certain property, and those combinations are
decomposed into basic workflow pattern using component disassembled tree. After combinations
status are merged with our verify algebra, the minimum combinations need to be verified is
shown in Workload after merging.

Table 1. Heading and text fonts.

Applications number Workload after merging Total workload
200 159595 167400
400 311520 334800
600 459831 502200
800 603482 669600

1000 745079 837000

6.2. Simulation Experiment

This experiment is about combining different combinations on same property. In this experiment,
different operations are used to be verified in parallel. The result of this experiment is shown in
Fig.6. It shows the ratio of reduced time in parallel execution compared with serial execution.

Computer Science & Information Technology (CS & IT) 111

From the result, it can be concluded that the ration of reducing the quantity of combinations to be
verified has relation with the scale and operations described above.

When TA is on a small scale, the efficiency of combination verification method is low. But as the
scale grows, the efficiency is promoted gradually. The main reason is that when verification scale
grows, the probability that tenants’ applications have same combinations goes higher, therefore
more verify results in shared databases are reused. Meantime, as more and more sub-
combinations have been verified, combination verification algebra can use the known status more
times to calculate the unknow status.

For another, the efficiency of parallel verification is related to the operation type. operation with
⊗ and ⊕ have much less strict requirements for status of sub-combinations than that with ⊖ and
⊙. For operator ⊗ and ⊕, status of combination can be derived as long as one of its sub-
combination has a certain status. Operator ⊗ and ⊕ have very high efficiency. For operator ⊖,
when all sub-combinations of a combination have same status, the status of the combination can
be worked out. Therefore, operator ⊖ has lowest efficiency. Operator ⊙ is a little less strict than
operator ⊖ but much lower than operator ⊗ and ⊕.

Fig. 6. Reduced percent in parallel verification

7. CONCLUSION

The VA defines the five states of verify result and operations of combining operation, provides a
foundation for parallel combinatorial verifying.

In cloud platform, the computing power is utilized to check the application correctness. We have
proposed VaaS on MTA, a scalable cloud-based on-demand service that uses formal models for
verification.

Further, we propose a new verification framework with VA and shared databases. All verify
results are saved in shared databases. the process of verification is designed where previous
verifying results are used to get unknown combinations status.

By simulation experiments, it can be proved that parallel verification execution proposed in this
paper is reasonable and correct and can decrease the number of the verification transactions
effectively.

112 Computer Science & Information Technology (CS & IT)

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundations of China (No.
61672074,91538202). Funding of Ministry of Education and China Mo-bile MCM20160203,

REFERENCES

[1] Yuan D M, Ren R W. Research on the SDN-Based Architecture of Space-Sky Information

Network[C]//Applied Mechanics and Materials. Trans Tech Publications, 2014, 644: 2854-2856.

[2] De Cusatis C, Cannista R, Hazard L. Managing multi-tenant services for software defined cloud data
center networks[C]//Adaptive Science & Technology (ICAST), 2014 IEEE 6th International
Conference on. IEEE, 2014: 1-5.

[3] Nunes B A A, Mendonca M, Nguyen X N, et al. A survey of software-defined networking: Past,
present, and future of programmable networks[J]//Communications Surveys & Tutorials, IEEE, 2014,
16(3): 1617-1634.

[4] Open Networking Foundation. SDN architecture, version 1.1, 2016.02.

[5] Monsanto C, Reich J, Foster N, et al. Composing software defined networks[C]//Presented as part of
the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13). 2013:
1-13

[6] Shin Y Y, Kang S H, Kwak J Y, et al. The study on configuration of multi-tenant networks in SDN
controller[C]//Advanced Communication Technology (ICACT), 2014 16th International Conference
on. IEEE, 2014: 1223-1226.

[7] Reich J, Monsanto C, Foster N, et al. Modular SDN programming with pyretic[J]. Technical Report
of USENIX, 2013.

[8] AuYoung A, Banerjee S, Lee J, et al. Corybantic: Towards the modular composition of SDN control
programs[C]//Twelfth ACM Workshop on Hot Topics in Networks (HotNets-XII), College Park, MD.
2013.

[9] Pelle I, Lévai T, Németh F, et al. One tool to rule them all: A modular troubleshooting framework for
SDN (and other) networks[C]//Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research. ACM, 2015: 24.

[10] Dixit A, Hao F, Mukherjee S, et al. Towards an elastic distributed SDN controller[J]. ACM
SIGCOMM Computer Communication Review, 2013, 43(4): 7-12.

[11] White S A. Business process modeling notation[J]. Specification, BPMI. org, 2004.

[12] Alves A, Arkin A, Askary S, et al. Web Services Business Process Execution Language Version
2.0[J]. Working Draft. WS-BPEL TC OASIS, May 2005.

[13] van Der Aalst W M P, Ter Hofstede A H M, Kiepuszewski B, et al. Workflow patterns[J]. Distributed
and parallel databases, 2003, 14(1): 5-51.

[14] Al-Shaer E, Marrero W, El-Atawy A, et al. Network configuration in a box: Towards end-to-end
verification of network reachability and security[C]//Network Protocols, 2009. ICNP 2009. 17th IEEE
International Conference on. IEEE, 2009: 123-132.

[15] Zakharov V A, Smelyanskii R L, Chemeritsky E V. A Formal Model and Verification Problems for
Software Defined Networks[J]. Modelirovanie i Analiz Informatsionnykh Sistem [Modeling and
Analysis of Information Systems], 2013, 20(6): 36-51.

[16] ter Hofstede A H M, Orlowska M E. On the complexity of some verification problems in process
control specifications[J]. The Computer Journal, 1999, 42(5): 349-359.

[17] Tsai W T, Colbourn C J, Luo J, et al. Test algebra for combinatorial testing[C]//Automation of
Software Test (AST), 2013 8th International Workshop on. IEEE, 2013: 19-25.

Computer Science & Information Technology (CS & IT) 113

AUTHOR

Kan Luo, born in Hunan province, China in 1994. He received the B.E. degree in Internet
of thing from the Sichuan University, China in 2016. He is currently a postgraduate at
Beihang University. His researches focus on blockchain and formal verification in Institute
of System in Beihang University. His direction is verification algebra in cloud environment.

Siyuan Wang, he was born in Anhui province, China. He received bachelors in computer
science from Xidian University in 2017. Currently, he is a graduate student of Beihang
University, major in blockchain and distributed system. He focus on distributed
verification and parallel computation on software engineering.

An wei, born in 1974, graduated from Tianjin University in 1996 with a bachelor's degree
in engineering, then worked in China National Software, Unisplendour Corporation
Limited, Beijing Global Safety Technology Co.,Ltd and other well-known enterprises,
engaged in software development, project management, consulting and other work, he is in

currently engaged in China Mobile(Hangzhou) Information Technology Co.,Ltd，in digital
currency product management, technology research and development, etc., for the virtual
currency, block chain technology in-depth study.

Wei Yu, he was born in Neijiang, Sichuan province, China in 1993. He received the B.E.
degree in computer science and technology from the Beijing Jiaotong University, China in
2016. Yu Wei is currently a postgraduate at Beihang University. His research directions are
related to high performance blockchain and smart contracts.

Kai Hu is a professor at Beihang University, China. He received his PhD degree from
Beihang University in 2001. From 2001 to 2004, he did the post-doctoral research at
Nanyang Technological University, Singapore. Since 2004, he is the leader of the team of
LDMC in the Institute of Computer Architecture (ICA), Beihang University. His research
interests concern embedded real time systems and high performance computing. He has
good cooperation with IRIT and INRIA Institute of France on study of AADL and
synchronous languages

