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ABSTRACT  
 
Graph databases and distributed graph computing systems have traditionally abstracted the 
design and execution of algorithms by encouraging users to take the perspective of lone graph 
objects, like vertices and edges. In this paper, we introduce the SmartGraph, a graph database 
that instead relies upon thinking like a smarter device often found in real-life computer 
networks, the router. Unlike existing methodologies that work at the subgraph level, the 
SmartGraph is implemented as a network of artificially intelligent Communicating Sequential 
Processes. The primary goal of this design is to give each ``router” a large degree of autonomy. 
We demonstrate how this design facilitates the formulation and solution of an optimization 
problem which we refer to as the “router representation problem”, wherein each router selects 
a beneficial graph data structure according to its individual requirements (including its local 
data structure, and the operations requested of it). We demonstrate a solution to the router 
representation problem wherein the combinatorial global optimization problem with 
exponential complexity is reduced to a series of linear problems locally solvable by each AI 
router. 
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1. INTRODUCTION 
 
Data is often thought of in the context of input and output, to be used or analyzed by some 
external program or process. The structure of graph data, however, can indicate useful 
information about how to best execute graph-based algorithms on that structure. This is 
demonstrated by a key refrain for existing graph computing paradigms; to “think like a vertex” 
[1]. In this work, we demonstrate the benefits of further integrating graph data with the analytics 
run on that data by creating an artificially intelligent graph database. When graphs have 
knowledge of their own properties, the ability to send messages to other graphs, run calculations 
concurrently, and perform self-modification, a graph is no longer a static source of data. It instead 
begins to resemble a network of routers. In this work we replace the “think like a vertex” mantra 
with “think like a router”, using a router inspired abstraction to create a “SmartGraph” database. 
The method distinguishes itself from existing graph databases through the artificially intelligent 
router abstraction; the routers that are defined by the subgraphs they encapsulate manage graph 
representation, concurrency and execution of operations themselves as opposed to being simple 
static data managed by an external process. 
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Asynchronous concurrent execution is difficult in traditional distributed graph computing 
systems like Pregel [2] in part because the “think like a vertex” mantra (that was chosen to 
make “reasoning about programs easier”) is typically implemented using Bulk Synchronous 
Parallel [3] methodologies. This involves top-level maintenance of lists of “active” vertices 
(and/or edges) during each “superstep” that all perform the same vertex calculation. This can 
waste many computing cycles [4], since many graph algorithms do not converge at the same 
rate across different nodes. Proposed solutions to this problem often focus on maintaining 
sets of which nodes (or edges) need to be updated during each iteration, and therefore 
despite acknowledgment of asymmetric convergence rates, ultimately still use a 
synchronous iterative system. 
 

 
 

Figure 1. Toy graph (LHS) and a possible go routine router assignment 
 

A key difference between the existing methods for graph computing and the system outlined in 
this paper is in having complex but manageable asynchronous concurrency of execution that 
eliminates the need for iterative supersteps and, more generally, the need for external macro-level 
management of the graph database and execution process. Though there exist previous works 
which have used subgraphs as a base unit for organizing computations, these works either limit 
their asynchronicity to “within subgraph” computations [5], or define subgraphs as connected 
components [6], [7]. In general, we wish to define subgraphs with less restrictions than existing 
methodologies allow in order to take advantage of more local structure, and to give these local 
structures individual autonomy.  
 
There are many clear benefits to having highly concurrent asynchronous routers capable of 
“thinking for themselves”. For example, routers can receive, execute, and transmit graph query 
operations without needing to know (and limit their speed to) the global supersteps, as well as 
automatically handle locally relevant operations concurrently with other routers; though we leave 
investigations of these properties to future work. In this paper, we focus on outlining the design of 
the Smart Graph itself and demonstrate how its asynchronous concurrency capabilities facilitate 
local artificial intelligence. In particular, we demonstrate the value of this approach through the 
“router representation problem”, where “routers” use machine learning methods and solve local 
optimization problems to great effect (i.e. well approximating the globally optimal solution). 
 

2. CONCURRENCY AND COMMUNICATING SEQUENTIAL PROCESSES 
 
In a modern graph database, it is a functional requirement not only that the system be able to deal 
with large amounts of data, but that the system be able to deal with a large amount of different 



Computer Science & Information Technology (CS & IT )                                  65 

 

requests with limited computational resources. The SmartGraph strives to facilitate massive 
concurrency involving graph operations on graph-based data by explicitly tying this graph 
structure into a concurrency management mechanism (through the router abstraction outlined in 
Section 3). 
 
Concurrency is a property of a system that allows multiple processes (that may be related or 
entirely distinct) to have overlapping lifetimes. This does not necessarily mean that the multiple 
concurrent processes execute simultaneously at the hardware level (indeed, unlike parallelism, 
concurrency can be achieved on a single thread), it may simply refer to processes being able to be 
paused momentarily on a single thread, while other processes are given priority. 
 

 
 

Figure 2. Toy comparison of graph-level and router-level vertex indexing 
 
Communicating Sequential Processes are a method of implementing concurrency in programs 
based on message passing. This work takes some liberty with the theory of CSP as a whole, and 
instead focuses on CSP as it is implemented in the programming language Go (a.k.a. Golang) [8], 
developed by Google in 2009 with a focus on concurrency primitives as first-class citizens. Go is 
a language often described as a systems programming language, and is commonly used to design 
services, web-servers etc. It is with these capabilities in mind that we have created the Smart 
Graph in the Go language. 
 
In Go, CSP is implemented through two main concurrency primitives: Go routines and channels. 
A go routine is essentially a very lightweight function that can be multiplexed onto different 
threads to be run concurrently with one another (and the Main, which is itself a goroutine). 
Goroutines communicate not by sharing memory, but “share memory by communicating” 
through the use of the channels. Of note is that although goroutines act like threads, they are not 
threads. This allows us to design a more lightweight concurrency mechanism, with many more go 
routines than available threads. This is ultimately of critical importance, as it allows us to 
simplify the management of graphs with a number of partitions at scales typically unheard of in 
the literature [9]. 
 

3. THE ROUTER 
 
The SmartGraph concept is implemented in Go by explicitly tying goroutines to the graph-
structured data that is to be explored or used in algorithms to be executed. Individual goroutines 
define (not merely control) the subgraphs of interest, with the relevant graph structure, vertex and 
edge properties defined in the variable size stack corresponding to the particular goroutine. The 
goroutines are our method of implementing the routers, and the highly concurrent functionality of 
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the goroutine is the mechanism through which we implement the communication and execution 
of analytics. 
 
This approach contrasts strongly with the very strict definition of a subgraph (as connected 
components) used in prior works [6], [7] as it allows us to arbitrarily assign vertices and edges to 
routers. Though this may seem similar to partitioning done at the network or thread level in 
distributed graph computing  [9], recall that goroutines are far more numerous than threads, and 
balancing occurs by multiplexing goroutines onto threads, in contrast to finding a partition that 
provides a balanced cut of the graph to all available threads. This allows us to partition the graph 
into many more pieces than might be indicated by the number of threads.  Having separate graph 
structures in the routers facilitates taking advantage of local graph structure or optimizing with 
respect to locally requested operations. An example of this phenomenon, which we refer to as the 
"router representation problem" is explored in Section 4. 
 
Through viewing this as the graph managing its own concurrent execution, one can do away with 
the top-level maintenance of sets of vertices, or algorithm iteration supersteps required by BSP 
methods. Concurrent execution is instead automatically handled by the router routines, as they 
will (through their status as a goroutine) immediately signal to the scheduler when they are ready 
(having received required data or messages from parent goroutines) to execute desired operations. 
This allows the system to be highly asynchronous, yet manageable thanks to the router 
abstraction. A basic example encapsulating a SmartGraph in goroutine routers is given in Figure 
1. Observe on the LHS, a toy directed graph with no particularly noteworthy node or edge 
features. The RHS shows an example set of three goroutine routers that encapsulate the 
SmartGraph. Each router, defined by a dotted ellipse of a primary color, contains a subset of 
nodes and edges from the overall graph. The dotted black connections on the RHS represent 
channels between the source and destination routers. 
 
The network router is useful not only as an abstraction model for efficiently implementing and 
executing graph algorithms, it also inspires useful functionality for the SmartGraph. Network 
routers have the ability to maintain useful information in memory, such as routing tables. They 
also possess the ability to perform custom routing logic independently of other routers. There are 
both obvious and subtle ways in which a graph database and analytics platform aping this 
functionality provides benefits. For example, a straight-forward method of employing the benefits 
of local representation is in saving memory address space as highlighted by Figure 2. The “local” 
aspect of the router AI can also be taken further than simple indices. With routers able to act 
independently, we introduce the notion of “local subgraph representations”, where the routers 
encapsulating a subgraph do so via different storage mechanisms and graph formats. For instance, 
one router AI may organize the subgraph it encapsulates using vertex adjacency lists, with 
another router AI learning to use an RDF framework. An example of this sort of router dependent 
representation is given in Figure 1. This approach has both computational benefits (since some 
operations have faster implementations in certain graph representations) and storage benefits (e.g. 
when using a sparse representation like CSR, or when compressing a subgraph consisting of 
nodes with high similarity). 
 

4. THE ROUTER REPRESENTATION PROBLEM 
 
The representation problem, as defined in this paper, is closely related to the more generic 
problem of selecting data structures either at compile-time or run-time, in order to minimize 
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memory usage, execution time, or some combination of the two. In contrast to this work, the 
literature focuses almost exclusively on optimization with respect to standard container objects 
(such as lists, sets, arrays, hash Maps etc) rather than graph specific data structures. A small 
number of papers due address the problem in a more graph specific context; for example, [10] 
directly considers the impact of basic graph operations and representations on execution time. 
However, it only uses the vertex adjacency list form and investigates how the single graph 
representation can be constructed by different container types, and so does not directly consider 
multiple graph specific data structures (i.e. alternatives to the adjacency list). Furthermore, [10] 
considers representations that “change” over time, but at any given time applies a single data 
structure to the entire graph. This means that the method cannot benefit from local graph 
structure. In contrast, [11] explicitly investigates different graph structure representations (both 
the adjacency list and the adjacency matrix), but again only considers their choice in application 
to the entire graph. 
 
The data structure selection problem has been approached from three primary directions. The first 
is that of optimization, where benchmarking is used to create a function that approximates the 
execution time of a series of operations [10]. The second is using machine learning to generate 
rule sets that can be used to determine the choices of representations (e.g. “if BFS is called on a 
graph with density greater than 25 percent, use an adjacency matrix, else use an adjacency list”) 
[12]. The final commonly used method is to simply provide a framework for implementing swap 
rules, and allow the user to specify precisely what those rules are manually [13]. 
 
Unique to this work, we explore methods for choosing local graph representations (that is, 
structural representations that apply locally rather than to the whole graph) by solving a set of 
optimization problems over learned models that consider both the local graph data, as well as the 
graph operations requested in relation to that data. Furthermore, we do so by deconstructing the 
problem such that a problem that initially appears exponential in complexity becomes linear in 
the number of routers by the number of router representations. In Section 4.1 we introduce the 
basics of the representation problem. In Section 4.2, we introduce our method for solving the 
representation problem under idealized circumstances, and in Section 4.3, outline how we learn 
the functions required to solve the problem in practice. This ultimately involves using average 
router behaviour as an approximation to input, which we argue in this section and demonstrate in 
Section 5, is an approximation that ultimately works very well. 
 
4.1.  REPRESENTATION METHODOLOGY 
 

Let  be a known property graph, i.e. a graph with properties attached to vertices and 
edges, where we allow multi-edges (e.g. representing different types of relationships between the 
same two objects). Let  denote a partition of the edge set . Let 

. Note that we allow for a vertex  to be an element of more than 

one . In a SmartGraph database, a separate router  encapsulates the subgraph . 
 
We emphasize that the partitioning introduced here should not necessarily be considered in the 
same vein as traditional graph partitioning [9], as we are operating on a single machine 
unconstrained by threads, and as such, we do not overly care about partition balance. 
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Let  denote the set of all graph representations allowed by the SmartGraph. Let  denote 

the representation employed by router  for , . In this work, the allowed set  

of representations includes the Matrix Adjacency List (MAL; though we typically use the term 
adjacency list in full), wherein vertices are stored in a hash-table like structure, with lists of 
outbound vertices), and the Resource Description Format (RDF), which stores separate tables of 
edges and vertices. We deliberately use the term tables here, as the use of RDF can be thought of 
as functionally similar to implementing a graph database in a traditional relational database 
system. These two representations are by far the most common method of representing graphs in 
practice. For example, the RDF format is used in Spark, and it's GraphX [14] and GraphFrames 
[15] packages, whereas adjacency lists are used by Neo4j [16], a leading commercial graph 
database system.  
 
There are many more graph representations, including adjacency matrices (often impractical in 
practice due to large storage requirements), sparse matrix representations (where-in a user is more 
focused on efficiently performing mathematical operations than graph operations; though the two 
are often closely connected), and representations with particular properties (such as allowing 
directed graphs only, disallowing multi-edges, cyles) etc. There are also custom representations 
designed to work efficiently with GPU operations [17], [18]. Thus it should be noted that the 
combination of representations used in this paper (and solved by the SmartGraph router 
abstraction herein) is not intended to argue that it will always result in the most efficient 
representative structure. Instead, we are arguing for a methodology for combining arbitrary 
different representation possibilities, and using the RDF and adjacency list as our representations 
for purposes of demonstration. 
 
4.2. PREDICTING EXECUTION TIMES AND CHOOSING REPRESENTATIONS 
 
We represent a database job  as a sequence of  known operations, that we 

classify as either “complex”, or “basic”. Complex operations are those that internally execute 
other operations (either complex or basic) to complete their execution, those that require 
knowledge of multiple routers (such as inspecting the number of vertices in a given router that are 
duplicated in other routers), and those that requiring complex input. What remains we describe as 
basic operations. We allow for directed acyclic dependence between operations of a job, i.e. all 
parents of an operation ,  must be executed before . Let  denote the set of  basic 

operations. We assume that the average run time for a basic operation  on a graph with  

vertices and  edges, and representation  is given by a function  (which we 

assume is given, Section 4.3 will outline how we learn this and other functions). 
 

Furthermore, we define a function , where  is a vector of basic operation 

counts, and  is the time to execute  (i.e. the linear combinations of functions  with 

appropriate parameters; where here we are not considering timing related to concurrent 
execution). Note that an operation initiated on router  may have to initiate calls to other routers 

in order to complete the operation. For example, since vertices are possibly duplicated, a 
“traverse neighbors” operation may require calls to other routers to check if those vertices exist 
there too, and get neighbors of such duplicates also. Let  denote the number of 
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calls of basic operations  initiated on router  when the operation is initiated on router . 

We separately include the size of the input (e.g. number of vertices),  involved in the 

operation for reasons that will become clear shortly. The approximate execution time 
 for an operation  initiated on router  is then given by 

 

 (1) 

 
However, in practice jobs are sequences of operations, where the number of relevant graph 
objects for a job can depend upon its parents. For example, consider a job  with 

 on a directed weighted graph  with partition , where  is an operation “traverse 

edges from current vertex set if “. For , we assume that we have some initial vertex 

 as the current vertex set. However, we do not know in advance the size of the vertex set to 

which  will apply. This means that in addition to knowing how many basic operations (and 

their type)  are required to execute a given operation, we also need a count of how many graph 

objects (e.g. vertices or edges) are filtered through by parent operations. We define  

as a function that takes an operation and returns a count of the graph objects within partition part 
 that survived the filtering of the parent operations . Then the execution time of job  is 

given by 
 

                              
 (2) 

 
where the first term corresponds to execution  on the initial router, and the sum represents 

running the subsequent operation on the “filtered” nodes.  We have overloaded the notation  to 

correspond to runtimes for either jobs or operations, with the meaning clear from context. Note 
that  because there may be duplicates (e.g. multiple edges pointing to 

the same vertex) that could otherwise cause a vast overestimation (e.g. consider a fully connected 
graph) in the number of objects for the next operation, and therefore a large error in time 
estimation. It is easy to see how this approach extends to a much more general job  as  
 

                                                   (3) 

 

where we assume  is some known set, and . With this execution time 

function, we therefore wish to solve the following optimization problem: 
 

 (4) 
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The Problem (4) is a very complex combinatorial problem (as there are exponentially many, , 

possible choices of the router representation vector ), where the representation of any given 

router  can influence the performance of operations sent to different routers . Thus the choice 

of router representations must be made globally, with no opportunity for parallelization. 
However, we observe in Problem (4) that we have an important opportunity, by virtue of having 
established total counts of basic operations and their router occurrence locations. 
 
Consider that the number of routers, and the length of the job  is finite. We can therefore 

interchange the order of summation on the RHS. Also, each complex operation ultimately results 
in a set of basic operations distributed across the routers, and that we know this distribution of 
basic operations before solving the optimization problem because it is not dependent upon 
representation because of how complex and basic operations are defined. This means, that 
supplied with appropriate  functions, we can rewrite the job  as a job , such that  consists 

only of basic operations (i.e. executing  executes ). Furthermore, we can group the basic 

operations by router, such that for ,  is the set of all basic operations for 

router . That is, we have the following very significant result: 
 

  (5) 

 
where we are abusing notation in assuming  also has an appropriate vector form of counts of 

basic operations on . There are two key points to Problem (5). The first is that we have 

successfully decomposed a very complex interdependent problem with exponentially many 
possible solutions, to a linear number (in the number of routers) of problems with a linear number 
of solutions (in the number of representations), a vast reduction in problem complexity. 
Furthermore, these optimization problems are local to each partition part. This means that each 
router can locally solve the simple problem associated with itself (potentially concurrently), and 
these locally optimal solutions together combine to form the globally optimal solution of Problem 
(4). 
 
4.3   LEARNING FILTERING, COUNTING, AND TIMING 
 
In practice, we do not know the , , and  functions unless we run the operations (which is 

contrary to our intent of choosing representations before execution). Instead, we seek to learn 

approximation functions , , and . To learn these functions, we send sample operations to 

each router (note the contrast to our learning of basic operation runtimes, which is done as a 
global precomputation) and learn based upon the average responses of each router. In job , 

different routers may have different vertex degree (affecting basic operation counts and  

because edges must be checked, even if they do not satisfy the condition to be passed to the next 

operation), and different edge weight distributions (affecting  and the number of objects 

passed to the next operation). 
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Unlike in distributed graph computing systems, where a job might represent a call to compute 
PageRank etc. over the entire graph, we explicitly identify the database functionality of the 
SmartGraph as the reason to define read-only jobs as queries. We wish to have a range of 
operations that is sufficiently flexible such that they can be composed into more complex graph 
operations. This means that their combination should be sufficiently expressive. In the extensive 
literature on graph query languages [19]–[21], the expressiveness of query formulations has been 
a central area of research, with expressiveness often traded off against complexity and efficiency. 
In practice, industrial graph query languages like Cypher and Gremlin have not been theoretically 
analyzed to any significant degree due to the complexity facilitated by the wide range of possible 
query operations permitted [22]. 
 
Query methodologies typically fall into two categories; path queries [19], and pattern matching 
[23]. For purposes of demonstration within this paper, we choose to use a path query approach 
rather than a pattern matching approach. We choose this approach because it is clearly suitable 
for the methodology outlined in Section 4.2. Consider that a path query typically has a form 

 where we are seeking paths from graph object set  to (potentially unknown) graph 

object set  that must satisfy conditions  along the path. There is an extensive literature on 

graph query algebras, and we refer the reader to [20] for a recent survey on the topic. For our 
purposes, we define path queries by chaining single hops with conditions on edges and/or 
vertices. Observe that this maps very neatly into the functions , , and . We have some path 

query that is decomposed into a series of stages, and conditions upon those stages. Each stage 
requires observing a certain number of graph objects (related to ), only some of which survive 

to the next stage (related to ), and these are internally composed of basic graph operations 

(related to , see Table 1) with timing dependent upon representation. 

 
In contrast, we define write-only jobs as operations that modify the structure or properties of the 
graph. Indeed, the existence of properties within the graph database strongly differentiates this 
problem, even from the existing attempts at data structure optimization, as they focus entirely on 
graph structure [10], [11], [24]. The existence of properties is critical to our methodology, as it is 
not possible to ignore the schema of the graph when profiling simple operations as in existing 
works (e.g. profiling a GetVertex() operation is not sufficient, since the schema of the vertex 
added will have a large impact on performance). We leave support for write-operations to future 
work, in this version of the representation problem we focus on read operations as graph-
querying, a fundamental read operation, is so elemental to the everyday usage of graph databases. 
 
In-line with our view of routers as artificially intelligent structures, we learn approximations to 

 and  independently at each router. That is, each router generates and executes sample 

queries according to the routers schema, and stores the resulting models for solving a problem 

akin to Problem (5), where we make the substitutions  and . Thus we are 

using average router performance as a model for these functions, something that is facilitated at 
finer grains as we increase the number of routers (recalling that it is the router abstraction and the 
implementation of routers without go-routines that allows us to fathom router numbers in the tens 
of thousands, which is greatly distinct from the relatively few shards used in typical thread-
focused graph computing). 
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Table 1. Examples of basic and complex operations 
 

 
 

5. EXPERIMENTAL RESULTS 
 

We use random forests [25] to learn each of the  approximations owing to their ease of 

use combined with their ability to capture non-linear interactions. To demonstrate the efficacy of 
the method, we construct an artificial graph system consisting of four vertex types; Person, 
Product, Location, and Mail (with 300,400,500, and 600 vertices of each type respectively). We 
split the graph by vertex type, such that a given router primarily contains a single vertex type. As 
we allow edges both within the routers and between them, each router also contains a number of 
duplicated vertex types copied from other routers due to external edges. We constructed the graph 
using the Erdos-Renyi model [26] such that average degree is given as in Table 2. We note here 
that we do not expect our method to require a graph substantially similar to the graph presented 
here-in, or even to partition by vertex type as we have done. Instead, this example was generated 
for ease of understanding and reproducibility. We have similar designed the average between 
router degree to be much smaller than the within-router degree. This is because methods of graph 
partitioning typically involving minimize communication between partitions [9], and so we 
believe this a reasonable choice (note that this work does not deal with the question of graph 
partitioning, since it would need to be solved jointly with the assignment problem; such 
investigation is left to future work). 
 
In terms of edge properties, we add two properties to each edge; a bivariate Gaussian with 
correlation  chosen  for each edge type. We wish to demonstrate multiple properties 

in this early work in order to demonstrate that queries that interact with multiple properties are 
not an inconvenience for the described method. 
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5.1 BASIC OPERATIONS 
 
For the purposes of learning basic operations, we simply run many instances of the basic 
operation on each edge and vertex type described in the schema, for varying sizes of the graph 
(that is; the only input available is the total number of vertices and edges in a graph). In this 
instance, we are not training specifically on the graph described in Table 2, merely graphs of  

Table 2. Average out-degree for each vertex combination 
 

 
 

different sizes with the same vertex and edge types. For this reason, the learning of  functions, 

which we do independently for each representation type (RDF and MAL in our example), can be 
performed independently of any particular graph, only depending upon the schema. This indicates 
that if we expect multiple graphs with the same schema, we need only learn our approximations 

 once. In contrast, the methods described below require training on each individual graph. 
 
5.2  COMPLEX TO BASIC COUNT MAPPING 
 
In order to learn , we generate a number (up to 10,000) of single-step test queries. These 

queries are of various types (e.g. filter a list of edges, filter in-bound from a list of vertices, filter 
out-bound from a list of vertices etc). In order to ensure that our methodology can be applied 
more broadly, we generate these test queries by randomly sampling vertices and edges from each 
router (the number of which is chosen uniformly from zero to the number of edges/vertices in the 
router). We then generate test queries randomly designating a property on the sampled graph 
object (in this paper, we only consider properties on edges), such that we are searching for edges 
that are greater than or less than the property at the sampled edge. Clearly this technique will 
generate queries that span the range of allowable property values, without any need to know in 
advance the distribution of any given property on the graph. We tag each query with a unique 
identifier, and track that identifier as results in the execution of basic operations (that is, for any 
given complex operation, we know exactly where basic operations occur, which operations they 
are, and how many of them occur). 
 
We then teach a random forest to learn this mapping, such that test input includes the number of 
vertices or edges we wish to start the query from. In addition, we include the number of vertices 
shared between the source router (i.e. the router where the query is first initiated) and the other 
routers. We found that the inclusion of the latter was key to obtaining random forest models with 
very high accuracy. We observe that the random forest models quickly learn to become very 
accurate. We note that this is not a case of overfitting; all experiments used half of the samples 
for training, and half for evaluation. Indeed, the nature of our sampling methodology means that 
the sample space of possible queries is extraordinarily large. With  for many mapping 

functions, we observe the power of local learning, where the models quickly pick up on router 
characteristics. 
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5.3  LEARNING FILTERING 
 
The method for learning filtering (that is, the number of objects that will survive a query) is very 
similar to that described above. However, here we explicitly use the parameter values of the 
queries as inputs to our random forest models. In addition to the relationships between the 
complex and basic operation tags, the system also keeps track of how many graph objects survive 
each filtering operation. As in the learning of , we quickly obtain . Of course, we 

expect that the difficulty of learning the filtering mapping will increase as the number of variables 
that we perform filtering on increases; future work will investigate this potential issue. 
Nonetheless, as demonstrated by Figure 3, in this example the random forests are capable of 
learning the filtering mapping approximation to a very high degree of accuracy, given sufficient 
samples. 
 

 
 

Figure 3. for learning vertex output and router locations given list of vertices and filtering conditions 

 
5.4  THE REPRESENTATION PROBLEM 
 
Finally we use all of the above methods to solve the representation problem. This problem 
involved sending 100 random two-step queries (that is, each query had an output that had to be 
fed into the next stage) to each of the four routers (as described by Table 2). We ran the queries in 
each of the sixteen possible sets of representation choices (in order to demonstrate the fully 

optimal solution), and then fed the query specifications to our learned models of . We 

observed very encouraging results (as seen in Figure 3); using our machine-learning models gave 
us representations that on average were only ~14% slower than optimal, with the average router 
representation being more than 13 times slower than the optimal. As optimal representations run 
the gamut from all-MAL and all-RDF to everything in between, the value of an approach that 
gets a near optimal solution is particularly important given that the consequences of incorrect 
assignment can be so drastic. Note that finding the true optimal solution requires running the set 
of jobs with every possible combination of router assignments. As mentioned previously, this 
requires an exponential number of router representation tests. As the size of the jobs increases, it  
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becomes infeasible to look for an optimal representation through brute force (and doing so is 
redundant anyway, as completing the job is the purpose of the execution on the database). In 
contrast, the SmartGraph method will scale with the machine learning models used to learn 

, and in many instances will not need to be retrained at all (e.g. if we keep the same 

graph and move from two-step to three-step traversal queries).  
 

6. DISCUSSION AND FUTURE WORK 
 
In this work we demonstrated a new methodology for constructing graph databases, and used the 
representation problem to demonstrate how giving artificial intelligence to “router-like” 
subgraphs can be used to solve highly complex problems. We showed that the representation 
problem is an exponentially large combinatorial optimization problem, but that it can be solved to 
near-optimality by having each router learn machine-learning model representations of 
 

 
 

Figure 4. Representation Problem on our Test Cases 
 
themselves and their neighboring routers. There is clearly more to explore in the representation 
problem alone. For example, solving the problem on real-world graphs (and investigating if scale-
free properties are problematic for the approach), solving the problem with the inclusion of write 
methods, investigating how changing the number and size of routers influences the learning 
capability of each router, and exploring joint-learning with the graph partitioning problem. In 
addition, the SmartGraph itself is rife with potential for further research. For example, in 
investigating how the routers can facilitate completely asynchronous querying capabilities, the 
real-world performance metrics of SmartGraphs with an enormous number of routers, and more. 
By adding artificial intelligence at the “edge” of graph database technology, we increase the 
computing capabilities of the graph database, and continue to muddle the space between graph 
computing and graph databases. 
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