
Dhinaharan Nagamalai et al. (Eds) : CCSEIT, ICBB, DMDB, AIAP, CNSA - 2019

pp. 35-57, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90605

PROBABILITY-DIRECTED PROBLEM

OPTIMIZATION TECHNIQUE FOR SOLVING

SYSTEMS OF LINEAR AND NON-LINEAR

EQUATIONS

Muhammed J. Al-Muhammed

Faculty of Information Technology American University of Madaba,

Madaba, Jordan

ABSTRACT

Although many methods have been proposed for solving linear or nonlinear systems of

equations, there is always a pressing need for more effective and efficient methods. Good

methods should produce solutions with high precision and speed. This paper proposed an

innovative method for solving systems of linear and nonlinear equations. This method

transforms the problem into an optimization problem and uses a probability guided search

technique for solving this optimization problem, which is the solution for the system of

equations. The transformation results in an aggregate violation function and a criterion

function. The aggregation violation function is composed of the constraints that represent the

equations and whose satisfaction is a solution for the system of equations. The criterion function

intelligently guides the search for the solution to the aggregate violation function by

determining when the constraints must be checked; thereby avoiding unnecessary, time-

intensive checks for the constraints. Experiments conducted with our prototype implementation

showed that our method is effective in finding solutions with high precision and efficient in

terms of CPU time.

KEY WORDS

Solutions for systems of linear and non-linear equations, random-guided search, optimization

problem, global minimum

1. INTRODUCTION

Systems of linear or non-linear equations are ubiquitous. They frequently result from modeling

problems in many important domains such as engineering, robotics, business, and many more.

Therefore, finding effective and efficient methods for finding simultaneous solutions for these

equations is extremely and practically important to study the properties of the problems modeled

by these equations.

The desirable properties of the solution methods are the effectiveness and efficiency. The method

must be effective in producing a solution with high precision. It must also produce the solution

for the problem in a minimum time and resources requirements.

Researchers have proposed many methods for solving systems of equations [1][7][8] (see [5] for

a good discussion of these methods). These methods either solve the equations directly by

36 Computer Science & Information Technology (CS & IT)

applying numerical methods [4][9][10][11][17][23] or solve them indirectly by transforming the

system of equations into problem optimization [2][3][4][5][12][16][19][22].

This paper offers a technique for solving systems of linear or nonlinear equations. The technique

indirectly solves a system of equations by solving an optimization problem. Each equation in the

system is considered a constraint. These constraints are combined, in a way to be made precise

later, into a non-negative function, called aggregate violation function. This function measures

the collective amount of violation caused by some substitution to the parameters of the

constraints. Thus, a substitution for which the aggregate violation function evaluates to zero is the

solution for the system of equations because this substitution satisfies all the constraints (i.e. the

equations).

The proposed technique goes even further by creating a function, called a criterion function,

whose main objective is to identify whether some substitution is promising (results in a better

value for the aggregate violation function) or not. The criterion function is created using the

systems of equations in such a way that, as will show later, its computational demand is much

less than the computational demand of the aggregate violation function. This function controls the

process of evaluating the aggregate violation by permitting this evaluation at some substitution

only when this substitution is promising. Our technique therefore saves the time required for

blindly evaluating the aggregate violation function on every possible substitution and

consequently increases its efficiency.

To solve the optimization problem, we propose a probability-guided algorithm that uses random

numbers and biased mapping to quickly direct the search to the parts of the variables’ domains

where the solution resides. The algorithm also makes use of the criterion function to intelligently

direct the search in such a way that the method avoids unnecessary checks of the constraints.

The paper makes the following contributions. First, it offers an effective algorithm for problem

optimization. Second, it offers effective transformation from systems of equations to optimization

problem. This transformation produces a very rigorous aggregate violation function whose

satisfaction results in high precision solutions of the equation systems. Third, the transformation

produces a light-weighted criterion function that quickly determines if the aggregate violation

function must be checked or not, thereby avoiding unnecessary time consuming checks of the

aggregate violation.

We present our contribution as follows. Section 2 describes the problem formalization, which

transforms the solution to systems of equations to the solution of problem optimization. In section

3, we discuss the proposed algorithm and its technical details. Section 4 presents our experimental

evaluation of the proposed technique. We conclude and give directions for future work in sections

5.

2. THE PROBLEM FORMALIZATION

In this section we formalize the problem of solving a system of equations. We present some

fundamental concepts in subsection 2.1 and show our formalization in subsection 2.2.

2.1 PRELIMINARIES

Consider the following system of equations:

Computer Science & Information Technology (CS & IT) 37

 (1)

We rewrite the system (1) as the following set of constraints

C = a x + a x +...+ a x = b 1 1 2 2 (i = 1, 2, …, n) (2)

The terms
i

ja and bi (i, j= 1, …n)are constants and xi's are variables. The variables xi'scan be of

any power (not necessarily linear) or even functions (sine, log, etc.). We represent them as in (2)

just to simplify the presentation. A solution to the set of equations is a substitutionX*(
**

2

*

1 ,...,, nxxx) for the variables xi's such that all of the constraints C
i
 hold.

We associate with the constraints (2) a function f(x1, x2, …,xn), which is defined bysumming all

the constraints C
i
 and taking the absolute value for the resulting sum. The variables xi'swith the

same index and power are combined together. Consider for instance the following system of

equations.

We sum these three constraints to yield the following function f(x1, x2, x3).

|174424|),,(3

2

22

2

11321 −++++= xxxxxxxxf

Observe that the variables x1 of powers 1 are summed to yield 4x1 and the variable x1 of

power 2 are summed together and so on.

According to this, we create the function f(x1, x2, …,xn) from the equations (1) by adding together

the variables with the same index and with the same power. The addition yields the function (3).

|...|),...,,(
11

2

1

21

1

121 ∑∑∑∑
====

−+++=
n

i

n

n

i

i

n

n

i

i
n

i

i

n bixaxaxaxxxf

 (3)

Let),...,,(21

i

n

iii
xxxX be a possible substitution. We define the degree of the violation caused by

the substitution X
i
 to some constraint C

k
 by:

|...|)(2211 k

i

n

k

n

ikikik
bxaxaxaX −+++=ρ

38 Computer Science & Information Technology (CS & IT)

It should be clear that the degree of the violation is zero (i.e. no violation) when the substitution

Xisatisfies the constraint Ck. The degree of the violation is positive if Xi does not satisfy the

constraint Ck. Therefore, greater values of ρk(Xi) indicate a large violation of the substitution

Xito the constraint Ck.

We in addition define the aggregate violation of the substitution X
i

to all of the constraints C
i
 as

follows

)()(
1

i
n

k

kic XXE ∑
=

= ρ

That is, the aggregate violation of some substitution X
i
is the sum of the violations of X

i
 over all

the constraints. The aggregate violation is zero only if X
i
 satisfies all the constraints. Greater

values of the aggregate violation E
c
(X

i
) indicate a greater violation for a constraint or more.

We emphasize that function f(x1, x2, …,xn) is completely different from the aggregate violation

E
c
(X

i
). The following example shows the difference between them.

Example (1): consider the following two linear equations whose solution is X (1, 1).

2x1 + x2 = 3

−x1 + x2 = 0

By summing these two equations and take the absolute value we obtain the function),(21 xxf =

|x1 + 2x2− 3|. Let X(0, 1.5). It is clear that)5.1,0(f equals to zero while E
c
(X) is not equal to zero.

That is, E
c
(0, 1.5) = |(2(0) + 1.5 – 3)| + |– (0) + 1.5 – 0| = 3.

For most of the systems of equations (especially the systems of linear equations), there is a large

number of common variables between the equations. For such systems the function f (x1, x2, …,

xn) is likely to have fewer number of variable substitutions than the original constraints because

the common variables are combined by the summation. The function f (x1, x2, …,xn) demands

therefore less computation than the aggregate violation function does for such systems. On the

other hand, even if there are few (or even none) common variables, the function f(.) still demands

less computation than the aggregate violation. That is because it computes the absolute value only

one time while the aggregate violation function computes the absolute value for each constraint.

Proposition (1): Let
iX ,

jX betwo possible substitutions for the aggregate violation function. If f(
iX) >

cE (
jX), it cannot be the case that

cE (
iX) <

cE (
jX).This is represented

mathematically as f(
iX)>

cE (
jX)⇒/

cE (
iX) <

cE (
jX).

Proof

The proof of this proposition is straightforward and follows directly from the definition of the

function f(.) and the aggregate violation function.

Suppose that)(iXf >)(jc XE . Since)(iXf <)(ic XE based on the definition of both f(.) and

E
c
(.) and the properties of the absolute value, we conclude that)(ic XE >)(jc XE .�

Computer Science & Information Technology (CS & IT) 39

Proposition (1) precisely defines the relationship between the aggregate violation E
c
(.) and the

function f(.). For any substitution X
i
, if the value of the function f(X

i
) is larger than the value of

the aggregate violation at some previous substitution X
j
, the substitution X

i
 will not satisfy the

constraints better than X
j
; that is X

i
 will not reduce the value of the aggregate violation. Given

this, the function f(.) can be used as a precondition for checking the constraints at some X
i
.

Namely, the constraints should not be checked at any substitution X
i
 for which proposition (1)

holds. Observe if the substitution X
i
 does not satisfy proposition (1) (i.e.)(iXf ≤)(jc XE), it is

not necessary that X
i
 reduces the constraints violations (reduce the aggregate violation).

We therefore call the function f(.) a criterion function. It is called so because it guides the process

of whether we should evaluate the aggregate violation or not at some substitution
iX .

2.2 PROBLEM TRANSFORMATION

Given the aggregate violation of the constraints)(ic XE and the criterion function f(X
i
), we

formalize the problem of solving the system (1) as follows. Rather than solving the system of

equations per se, we indirectly solve it by solving the following optimization problem.

Minimize)()(
1

i
n

k

kic XXE ∑
=

= ρ

Guided by the criterion function:

|...|),...,,(
11

2

1

21

1

121 ∑∑∑∑
====

−+++=
n

i

n

i

i

n

i

i

i

i

n bixaxaxaxxxf

 (4)

According to the definition of the aggregate violation E
c
(X

i
), it is clear that the global minimum

of E
c
(X

i
) is zero. Therefore, if E

c
(X

i
) = 0 for some substitution

iX , this substitution is the global

minimum for the optimization problem (4). This substitution X
i
 is also an exact solution for the

system (1) because it violates no constraint (i.e. satisfies all the equations in system (1)). If,

however, E
 c

(X
i
) > 0, the substitution X

i
 is not the global minimum for the optimization problem

(4). This substitution X
i
 is not an exact solution for the system (1) either due to the constraint

violation (i.e. one or more of the equations in system (1) not satisfied). Furthermore, it can be

easily shown that if the substitution X
i
 is an exact solution for the system (1), it is not the global

minimum for the optimization problem (4) either. According to this discussion, a substitution X
i

is a solution for the system (1) if and only if it is the global minimum for the optimization

problem (4).

The criterion function f(x1, x2,…,xn) plays an extremely important role in the process of

optimizing the problem (4);and equivalently finding a solution for the equations (1).It

intelligently instructs the solver when the constraints must be checked for some substitution X
i
.

Blindly checking the constraints for every possible substitution X
i
has a negative impact on the

performance of the solver since this check is computationally intensive especially if we have a

large number of these constraints. Generally speaking, the criterion function f(.) greatly improves

the solver’s performance by allowing this solver to check the constraints only when it should.

40 Computer Science & Information Technology (CS & IT)

3. THE HIT-HIT MOVING DIRECTIVES ALGORITHM

We propose an algorithm, called Hit-Hit Moving Directives (HHMD-3), for solving

unconstrained optimization problem (4). HHMD-3 is a probability-directed search technique that

finds the global optimum (minimum or maximum)for unconstrained optimization problems such

as the one in (4). This algorithm utilizes sequences of random numbers to search for the global

optimum within the domains of the variables. It defines three directives over the unity interval [0,

1] as shown in Figure 1. These directives are a principal directive and two marginal directives.

The principal directive covers part of the unity interval, which we call the effective search

interval (ESI). The marginal directives cover the remaining part of the unity interval, which we

call the marginal search intervals (MSI).The principal directive is centered at the point Ci of the

unity interval and has a radius qi. The two marginal directives (left and right) are defined in the

rest of the interval with the radius (1- 2qi).The role of these directives is to guide the search in the

domains of the variables and quickly locate the global minimum for the problem. In particular,

the principal directive biases the search to the parts of the domains where the global minimum is

more likely to reside. The two marginal directives guarantee that if the global minimum is not

within the effective search interval, the technique can escape being caught within this interval and

there for missing the global minimum.

Figure 1: The principal directive (shaded) and two marginal directives on the sides.

The principal and marginal directives are fully defined by their parameters Hi and hi (heights)

and the radius (qi). The heights are given by formulas (5).

i

i

i
q

q
H

2

|| −+
=

βα

)(21

||

ε

ββ

−−

−−
=

i

i

i
q

q
h

 (5)

Where α and β belong to the interval [0, 1] and α + β =1.The number ε is a sufficiently small real

number (e.g. 1E−300), called the adjustment factor. Given that the value of qi∈(0, 0.5], the role of

the adjustment factor is to guarantee that the denominator of hi will never be zero and therefore hi

becomes undefined.

Referring to formulas (5), we can easily observe that Hi*(2qi) = α + |β−qi| is the area of the

principal directive. Likewise, hi*(1−2(qi−ε)) = β−|β−qi| is the area of the two marginal directives.

This means that the area of the principal directive is at least α while the area of the two marginal

directives at most β. It is clear that the sum of the areas of the three directives equals 1. Note that

Computer Science & Information Technology (CS & IT) 41

we can increase the area of the principal directive by increasing α and increase of the marginal

directives by increasing β. Additionally, decreasing the radius qi enlarges the area of the principal

directive and reduces the area of the two marginal directives.

Definition (1)

1We make two clarifications. 1) We call the part of the interval that is covered by the principal

directive the effective search interval because it has the global optimum with a high probability.

2) For the purpose of this paper, we mean by "global optimum" the minimum value (zero) of the

aggregate violation.

Let P
M

be the probability that some random number γ∈[0, 1] belongs to the base of the principal

directive and P L
and P R

be the probability that γ belongs to the bases of the left and right

directive respectively. We define these probabilities by the following formulas. P
M

= Hi*(2qi) and

P
L
 = hi*(ci-qi) and P

R
 = hi*(1-ci-qi). Where ci is the center of the principal directive and qi is its

radius.

Observe that definition (1)bases the probability on the area of the directive. That is, the larger the

area of a directive is the larger the likelihood that γ will belong to the base of this directive. Since

α and β represent respectively the lower and upper bounds of respectively the principal and

marginal directives areas, we can increase the probability of having some random number belong

to the base of principal directive by increasing α. Since α + β = 1, this means as the probability of

having a random number belong the base of the principal directive increases the probability that

this random number belongs to the bases of the marginal directives decreases. In other words, α

and β allow us to fully bias random numbers toward the bases principal or marginal directives.

The values for α and β are determined based on the criteria of biasing the probability toward the

principal directive without totally ignoring the marginal directives. Since the minimum bound of

the principal directive is α, any value for α>0.5 would cause more bias toward the principal

directive base (or the effective search interval). During our preliminary experiments to tune the

values of α and β, we found that α= 0.75 and β =0.25 are very rational choices because they

quickly derive the search to optimal solution.

Given the principal and marginal directives, we define the biased mapping between the interval

[0, 1] and the bases of the directives by the mapping rules in Figure2. As the figure shows,

mapping a random number ψ∈[0, 1] to the bases of the principal or marginal directives is actually

proportional to the area of the directives. Specifically, the algorithm comparesψi to the areas of

the left and right directives and mapsψi to base of either the left directive if the comparison in

lines 2, 6 succeeds or to the base of the right directive if the comparison in lines 3, 5 succeeds. It

mapsψi to the base of the principal directive in lines 4 or 7 otherwise.

Based on the discussion, it is clear that any random number ψI either hits the base of the principal

or the bases of the marginal directives. That is why we called the algorithm hit-hit algorithm.

42 Computer Science & Information Technology (CS & IT)

(1) IFCi< 0.5 THEN

(2) IF iψ <P
L

THEN iγ = iψ / hi

(3) ELSEIf iψ <(P
L
+P

R
) THEN iγ = iψ / hi + 2qi

(4)
ELSE iγ = ii

i

i qC
H

RiLi
−+

+−))((2 ψ

(5) ElseIF iψ <P
R
THEN iγ = (iψ /hi)+ iC + qi

(6) ELSEIF iψ < (P
L
+P

R
) THEN iγ =(iψ / hi) + iC + qi – 1

(7) ELSE iγ = ii

i

i qC
H

RiLi
−+

+−))((2 ψ

Figure2: the rules of the biased mapping from [0, 1] to principal/marginal directives

3.1 THE TERMINATION CONDITIONS

Let and be the two substitutions of the variables x1, x2, …,x n in two consecutive rounds i and

i+1. Suppose also that Ec (Xi) and Ec(Xi+1)are the best values for E c in the rounds i and i+1

respectively. We define the termination conditions as follows.

 (6)

Where δ is sufficiently small number (e.g. 1E−100). The termination condition means that the

value of the aggregate violation does not change for two consecutive rounds i and i+1. If this

condition holds, the search for the global minimum (zero) has reached an equilibrium point and

no improvement can be achieved if the algorithm continues the search.

3.2 THE ALGORITHM TECHNICAL DETAILS

Figure 3 shows the technical details of the algorithm. The algorithm searches the domains of the

parameters X
i
for values that bring the aggregate violation function E

c
 (X

i
)to its minimum (zero).

It performs a number of rounds until the termination condition (6)holds. In any round j, the

algorithm conducts many experiments each of which consists of m steps. In each step, it generates

n random numbers ψiin the interval [0, 1] using the computer built-in random generator and uses

the biased mapping rules (Figure 2) to map each random number to the bases of one of the

directives (principal or marginal). The mapping yields new biased random numbers γi (lines

9−11). The algorithm uses the biased mapping to focus most of the search in the principal

directives since these directives cover parts of the domain sin which the global minimum most

likely resides. The biased mapping, however, does not ignore the marginal directives that cover

the remaining parts of the domains. Thus, the biased mapping never causes the algorithm to miss

the global minimum or get trapped in a local minimum.

The values γi's are mapped to the actual domains ([ai, bi]) of the variables X
i
 using the formula in

line 12. For each randomly created substitution for the variables X
i
, the algorithm computes the

value of the criterion function (line 13).If the new substitution satisfies the condition in line 14,

this substitution is promising and therefore, the algorithm computes the aggregate violation at this

substitution (line 15). If the calculated value better than the previous minimum stored in VE
c
, the

algorithm stores the new minimum along with the following fundamental information: the

Computer Science & Information Technology (CS & IT) 43

substitution itself and the random values γi's from which the substitution was generated(lines

17−19).

After performing m steps, the algorithm reduces the radiuses of the principal directives using the

reduction formula ∀iqi =qi/d, where d>1 (lines 21-23). The algorithm performs another

experiment if at least one of qi’s is still greater than some pre-specified threshold ε (typically ε is

less than 1E−60).

We make two important points regarding qi reduction formula and its effect on the algorithm

convergence. First, the reduction factor d can be theoretically any real number greater than 1.

Greater values of d cause the algorithm to converge faster because it quickly reduces the radiuses

of the principal directives. We tested our algorithm for only four different values of d, namely

1.2, 1.5, 1.8, and 2. All these values cause the algorithm to converge quickly irrespective of the

formula that defines the aggregate violation, although the time of convergence becomes relatively

1
The best value for E

c
 in round j is the one that yields the closest value to zero in this round

shorter as d increased from 1.2 to 1.5 to 2. No tests were made for d greater than 2. Secondly,

referring to formula 5, it is clear that as the algorithm further reduces qi, the areas of the principal

directives increase and the areas of the marginal directives decrease. This means that more points

are mapped to the bases of the principal directives and fewer points to the bases of the marginal

directives. In other words, reducingqi plays the major role in greatly focusing the search to the

principal directives (where the global minimum most likely is located). Therefore, the effective

intervals are thoroughly searched because (1) their radiuses continuously reduce and (2) more

points mapped to them

44 Computer Science & Information Technology (CS & IT)

1 FORi← 1 to nDO

2 Ci = 0.5/**initialize centers of principal directives */

3

qi = Ci/** initialize radiuses of principal directives*/

4 cVE = ∞/** initially the aggregate violation of the constraints is so large */

5 REPEAT

6 j = 1

7 WHILE (qi>ε for anyi) DO

8 FORk← 1 to mDO/** m steps in each experiment */

9
FORi← 1 to nDO

10 Generate a random number ψi ∈ [0, 1] /**Random numbers generated*/

11
γi = MAP (ψi) using the logic in Figure 2

12)(iiii

j

i abax −+= γ /**map the random number to actual variable interval*/

13 F = f()...,,, 21

j

n

jj xxx /** compute the criterion function f at
j

ix */

14 IFF<
cVE THEN

15 F=E
C

()...,,, 21

j

n

jj xxx)/**compute the aggregate violation function*/

16 IFF<
cVE THEN

17

cVE = F

18 (min =jX)...,,, 21

j

n

jj xxx

19)...,,,(21min n

j γγγ=Ω

20 ENDFOR (K)

21 FORi← 1 to nDO

22 qi = qi/d/**reduce the radius qi by d*/

23 Compute Hi and hi using formulas(5)

24 ENDWHILE (qi >ε, for anyi)

25 FORi← 1 to nDO

26 Ci = γi

27 IFCi<=0.5 qi = Ci

28 ELSEqi = 1- Ci

29 j= j + 1

30 UNTIL Termination Condition (6) holds.

31
END ALGORITHM

Figure 3: the technical steps of the Hit-Hit moving directives algorithm (HHMD-3).

In any subsequent round j, the algorithm uses the information of the previous round j−1 to

dynamically adjust the parameters of the directives. In particular, the algorithm moves the centers

of the principal directives Ci’s to the values γi’s, which produced the best minimum in the

previous round, and calculates the new radiuses qi’s (lines 25–28). The algorithm moves the

centers to these values because there is a high probability that the search finds values for the

variables that improve the minimum of the aggregate violation in the vicinity of the random

numbers γi’s.

Keep the so-far best minimum in

round j along with the values of its

variables and the random numbers

that produced this value.

Move the centers of the principal

directives to the new points that have

resulted in the best minima in round j

Computer Science & Information Technology (CS & IT) 45

4. PERFORMANCE ANALYSIS

We implemented our algorithm using JAVA programming language. We conducted many

experiments using our prototype implementation to evaluate the effectiveness and efficiency of

our algorithm. The experiments were conducted on a large number of systems of linear and non-

linear equations obtained from benchmarks[5][14][15] and others.The hardware platform is Duo

core processor laptop running at 1.7 GH with main memory of 2GB. The operating system is

windows 7 (32 bits).

We start our analysisby studying the performance of our algorithm on samples of systems with

few but challenging equations obtained from [16][17]. Table 1 shows these systems and the

domains of their variables. It shows also the performance of our algorithm measured in terms of

both the aggregate violation EC (i.e. the precision of the solutions) and the CPU time in

milliseconds (ms).

A sample of Systems Performance

Equations Domain Aggregate violation EC CPU Time (ms)

0)1(

01

0)sin(8x-

3

3

21

21

2
1

=−

=−+

=

x

xx

xe
x

[-10, 10] 7.54E−7 377

0)
3

310
(20

025.0625

05.0)cos(3

3

2

2

2

1

321

21 =
−

++

=−−

=−−

− π
xe

xx

xxx

xx

[-10, 10] 8.34E−8 689

2

60

855

231

32

3

1

32121

13

23

12

=−+

=−−

=−+

xxx

xxx

xxxxx

xx

xx

xx

 [-10, 10] 2.19E−8 3036

03.17)sin()cos(2

02.10)cos()sin(23

21

2

2

21

3

1

=−+

=−+

xxx

xxx
 [-10, 10] 6.35E−13 23

02

06

0103

3

2

2

3

1

2

3

2

2

2

1

3

32

2

1

=−+−

=−++

=+−+

xxx

xxx

xxx

 [-10, 10] 1.5E−12 273

0))
25.0

1(..2

0).sin(5.05.0
25.0

12

12

2112

=−−+−

=−+

eexex
e

xxxx

x

ππ

π
[-10, 10] 4.45E−13 51

02226424

01442244

221

2

1

3

2

1

2

221

3

1

=−−++

=−−++

xxxxx

xxxxx
[-10, 10] 2.55E−11 12

Table 1: The performance of the algorithm presented in terms of aggregate violation (EC) and CPU time in

milliseconds (ms).

According to the performance figures in the table, the algorithm performed really well. This is

evident in both the aggregate violation (EC) and the CPU time. The highest aggregate violation is

"7.5E07". The rest of aggregate violations are much less.This means that we have solutions

with really high precision. As the CPU time shows, the algorithm required roughly "0.6" second

or less for almost all the cases except one case for which the algorithm required about 3 seconds.

This problem took 3 seconds because it is known to be so hard to solve.

46 Computer Science & Information Technology (CS & IT)

Table 2 presents benchmarks obtained from [5][14][15]. The table shows the name of the systems

of equations (label), the equations themselves, the number of variables, and the domains of the

variables. Note, for the economics modeling applications, we considered systemsthat consist of

up to 1000 variables while other algorithms consider only up to 20.

Label System of Equations Variables domain

Benchmark i1

x1 − 0.25428722 − 0.18324757x4x3x9 = 0

x2 − 0.37842197 − 0.16275449x1x10x6 = 0

x3 − 0.27162577 − 0.16955071x1x2x10= 0

x4 − 0.19807914 − 0.15585316x7x1x6 = 0

x5 − 0.44166728 − 0.19950920x7x6x3= 0

x6− 0.14654113 − 0.18922793x8x5x10 = 0

x7− 0.42937161 − 0.21180486x2x5x8=0

x8− 0.07056438 − 0.17081208x1x7x6 =0

x9− 0.34504906 − 0.19612740x10x6x8 =0

x10− 0.42651102 − 0.21466544x4x8x1 =0

10 [-2, 2]

Neurophysiology

application

x1
2
 + x3

2
 = 1

x2
2
 + x4

2
 = 1

x5x3
3
 + x6x4

3
 = c1

x5x1
3
 + x6x2

3
 = c2

x5x1x3
2
 + x6x4

2
 x2 = c3

x5x1
2
x3 + x6x2

2
x4 = c4

6 [-10, 10]

Chemical

equilibrium

application

x1x2 + x1 − 3x5 = 0

2x1x2 + x1 + x2x3
2
 + R8x2– Rx5 + 2R10x2

2
 +

R7x2x3 + R9x2x4 = 0

2x2x3
2
 + 2R5x3

2
 − 8x5 + R6x3 + R7x2x3= 0

R9x2x4+2x4
2
 − 4Rx5 = 0

x1(x2 + 1) + R10x2
2
 + x2x3

2
 + R8x2 + R5x3

2
 + x4

2
 −

1 + R6x3 + R7x2x3 + R9x2x4 = 0

/400.00003846,40002155/0.0R

40.00001799/0,4003448/.00

4002597/0.0,193.0,10

109

87

65

==

==

===

R

RR

RRR

5 [-10, 10]

Combustion

Application

10 [-10, 10]

Computer Science & Information Technology (CS & IT) 47

Benchmark i4

10 [-1, 1]

Benchmark i5

021466544.042651102.0

019612740.034504906.0

019612740.007056438.0

021180486.042937161.0

018922793.014654113.0

019950920.044166728.0

015585316.019807914.0

016955071.0227162577.0

016275449.037842197.0

018324757.025428722.0

7

1

4

8

3

1

3

8

3

4

2

10

7

8

4

6

3

8

3

6

3

10

2

9

7

6

4

7

3

6

3

7

3

1

2

8

7

8

4

5

3

8

3

5

3

2

2

7

7

10

4

5

3

10

3

5

3

8

2

6

7

3

4

6

3

3

3

6

3

7

2

5

7

6

4

1

3

6

3

1

3

7

2

4

7

10

4

2

3

10

3

2

3

1

2

3

7

6

4

10

3

6

3

10

3

1

2

2

7

9

4

3

3

9

3

3

3

4

2

1

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

10 [-1, 1]

Benchmark i2

017949149.057001682.0

004417537.092894617.0

018114505.056003141.0

019838792.020436664.0

021037773.026516898.0

020920602.010607114.0

021790395.046588640.0

024475135.059642512.0

023556251.070561396.0

017221383.056896263.0

016522613.057596835.0

021241045.046896600.0

018180253.045937304.0

012384342.013128974.0

015724045.033565227.0

020198178.024711044.0

016497518.047620128.0

020177810.023939835.0

005612619.087528587.0

019594124.024863995.0

113120

1613719

813618

13102017

919416

109115

1031314

2016713

4111412

8171611

1391210

172139

1815198

1513127

1118166

16985

115124

117103

118182

161071

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

20 [-1, 2]

Benchmark i3
The same as Benchmark i2, but different interval

for the variables.
20 [-2, 2]

Economics

modeling

application 01

)11(,0)(

1

1

1

1

=+

−≤≤=−+

∑

∑

−

=

−−

=

+

n

l

l

kn

i

knkiik

x

nkcxxxx

5, 20, 50,

100, 200,

300, 500,

1000

[-10, 10]

Brown

2x1+x2+x3+x4+x5− 6=0

x1+ 2x2+x3+x4+x5−6=0

x1+x2+2x3+x4+x5 −6=0

x1+x2+x3+2x4+x5−6=0

x1+x2+x3+x4+2x5−1=0

5 [0, 3]

Table 2: Systems of equations benchmarks.

48 Computer Science & Information Technology (CS & IT)

Solutions Performance

System Variable values EC Time (ms)

Benchmark -i1

x0=0.2638927436500653

x1=0.380317066392982

x2=0.2804250886510391

x3=0.2132412203761027

x4=0.44438239437353655

x5=0.14944883430013256

x6=0.433092499920527

x7=0.06746428319148512

x8=0.3469624642044846

x9=0.39763460651053917

0.0081 212

Neurophysiology

application

x0=0.773073454805388

x1=0.5765805512504851

x2 = 0.6343165089155978

x3 =−0.8170403098469485

x4=3.7481129311345285E-13

x5=3.822719918389339E-12

1.79E−11 609

Chemical equilibrium

application

x0=0.050958721835229426

x1=1.748330139399421

x2=0.2715118958827709

x3=-0.8464707181498703

x4=0.03582437318962839

0.0325 670

Combustion

Application

x0=7.885401512197632E-6

x1=-6.287224145751225E-7

x2=1.7216365890249108E-5

x3=-5.111503458721245E-6

x4=7.830654080720478E-6

x5=1.526760066106192E-5

x6=7.555224350141998E-6

x7=1.2783895904533438E-5

x8=-1.2757429127319142E-5

x9=-3.574492433600085E-6

2.66E−9 297

Benchmark i4

x0=-0.5077723973445423

x1=0.615256474526175

x2=-0.5279178631279993

x3=0.44796092038237223

x4=0.667271196118725

x5=0.38625078626268783

x6=0.6572653126601917

x7=-0.2712236420769336

x8=0.5881911765836603

x9=-0.6537033315232845

0.00281 203

Benchmark i5

x0=-0.501902791893752

x1=0.6146257966533131

x2=-0.5293855157439512

x3=0.44456590561843945

x4=0.6644074507239301

x5=0.39586363376169453

x6=0.6550747173991653

x7=-0.2642942057821429

x8=0.5874639200667668

x9=-0.6531478452401633

9.52E−5 190

Benchmark i2

x0=0.22065654006016544

x1=0.6679777509246896

x2=0.25308693662292403

0.0655 834

Computer Science & Information Technology (CS & IT) 49

x3=0.47593660216437894

x4=0.3108760076620436

x5=0.3420931417977098

x6=0.14056743503862323

x7=0.4777925690182352

x8=0.49065449430132757

x9=0.6113946257954175

x10=0.5808035003270997

x11=0.7524629539375702

x12=0.5991667120015798

x13=0.48572097680262116

x14=0.12027902783234179

x15=0.304471847407779

x16=0.31235184663156956

x17=0.5779178263400047

x18=0.9308157797622583

x19=0.5225894624268062

Benchmark i3

x0=0.25379644520356415

x1=0.883043903677712

x2=0.24808502738095983

x3=0.4768828006356207

x4=0.2618446169814348

x5=0.3500860164569821

x6=0.1379779091289688

x7=0.47131924360702326

x8=0.49682215346828507

x9=0.6122399213932219

x10=0.5097531602011571

x11=0.7334022329597554

x12=0.6024825313683912

x13=0.48527132307332055

x14=0.12222150380249319

x15=0.3115283407139193

x16=0.24650097840355523

x17=0.5780392185924179

x18=0.9300901851505055

x19=0.5757777139250799

0.06911 452

Economics modeling

application(5)

x0=-0.35442260333596565

x1=-0.23692868742035955

x2=-0.14071376443385475

x3=-0.26793494480927116

x4=-5.844214001626824E-13

9.21E−13 97

Economics modeling

application(20)

x0=2.6989965817847406E-11 x1=-

1.0128786698260228E-11

x2=7.263523116307624E-12

x3=2.5082158572331537E-12 x4=-

2.169464607959526E-11

x5=7.506884003305458E-12

x6=-9.341860618405917E-12 x7=-

6.4712679659351124E-12

x8=3.375077994860476E-12

x9=-2.107469754264457E-11 x10=-

1.8065549056700547E-12 x11=-

2.1234569658190594E-11 x12=-

6.339817559819494E-12

x13=1.8850698779715458E-11

x14=-1.1876721828230075E-11

7.10E−15 163

50 Computer Science & Information Technology (CS & IT)

x15=-3.858247055177344E-12

x16=-1.8186341321779764E-11

x17=3.597122599785507E-12 x18=-

1.4916068380443903E-11

x19=9.329426120530115E-12

Economics modeling

application(30)

x0=1.438849039914203E-13

x1=-3.126388037344441E-13

x2=6.288303211476887E-13

x3=5.258016244624741E-13

x4=-6.057376822354854E-13 x5=-

3.979039320256561E-13

x6=4.156675004196586E-13

x7=3.0020430585864233E-13 x8=-

6.963318810448982E-13

x9=1.2789769243681803E-13

x10=6.394884621840902E-14

x11=2.7000623958883807E-13

x12=6.750155989720952E-14 x13=-

1.5276668818842154E-13 x14=-

5.080380560684716E-13

x15=1.1723955140041653E-13

x16=-6.377121053446899E-13

x17=-3.2152058793144533E-13

x18=-4.4231285301066237E-13

x19=1.6697754290362354E-13

x20=6.359357485052897E-13 x21=-

5.595524044110789E-13 x22=-

6.856737400084967E-13 x23=-

3.126388037344441E-13 x24=-

1.1546319456101628E-13

x25=3.907985046680551E-14 x26=-

1.580957587066223E-13 x27=-

7.105427357601002E-15

x28=5.666578317686799E-13

x29=3.019806626980426E-13

1.77E−15 249

Economics modeling

application(100)
- 1.77E−15 645

Economics modeling

application(200)
- 7.68E−14 2,046

Economics modeling

application(300)
- 3.36E−14 2,938

Economics modeling

application(500)
- 3.16E−14 11,099

Economics modeling

application(1000)
- 5.13E−14 32,971

Brown

x0=1.0000000000000413

x1=0.9999999999999537

x2=0.9999999999999963

x3=1.0000000000003915

x4=0.9999999999995891

5.11E−13 87

Table 3: The performance numbers of our algorithm for the benchmarks in Table 2.

Table 3 shows the performance of our algorithm for the systems in Table 2. The performance is

presented in terms of values of the variables, the aggregate violations, and the CPU time in

milliseconds.We did not show the values of the variables for the economics modeling application

Computer Science & Information Technology (CS & IT) 51

when the number of the variables exceeds 30. Basically the values for these variables are pretty

the same as for 30 variables or fewer.

Based on the figures in Table 3, our algorithm produced solutions with high precision. The

aggregate violations arexE−−−−9, xE−−−−11, xE−−−−14,and xE−−−−15 (x some real number) for most of the

systems. For some of the systems, the accuracy was ranging from 7.43E-4 (Benchmark i5) to

0.06911 (Benchmark i3). It is worth mentioning that our algorithm achieved highprecision for

hard systems of equations: Chemical equilibrium application and Benchmark i2.

To further discus the performance of our algorithm, we compared itwith highly effective

algorithms in literature. The comparison includes both the CPU time and the precision of the

solution (in terms of aggregate violation). Table 4 compares our algorithm and the Modified Line

Search (MLS) [4]. The entry "-" in some of the table’s cells means that there is no reported

performance for the corresponding system of equations.

Benchmarks (variables)
Our algorithm MLS (Modified Line Search)

EC Time (ms) En Time (ms)

Benchmark i1 (10) 0.0081 212 0.22084 516

Benchmark i2 (20) 0.0655 834 0.60634 1,297

Benchmark i3 (20) 0.06911 452 0.61134 1,016

Benchmark i4 (10) 0.00281 203 0.20734 953

Benchmark i5 (10) 9.52E-5 190 0.23610 1,000

Neurophysiology application (6) 1.79E−11 609 0.01998 922

Chemical equilibrium application

(5)

0.0325 662

0.16072 922

Combustion Application (10) 2.66E-9 297 0.01506 860

Brown (5) 5.11E−13 87 - -

Economics modeling application(5) 9.21E−13 97 - -

Economics modeling

application(10)
5.10E−15 132 0.00294 266

Economics modeling

application(20)
7.10E−15 163 0.00459 1,078

Economics modeling

application(30)
1.77E−15 249 - -

Economics modeling

application(100)
1.77E−15 645 - -

Economics modeling

application(200)
7.68E−14 2,046 - -

Economics modeling

application(300)
3.36E−14 2,938 - -

Economics modeling

application(500)
3.16E−14 11,099 - -

Economics modeling

application(1000)
5.13E−14 32,971 - -

Table 4: The performance of our technique versus MLS.

Table 4 and Figure 4 indicate that our algorithm outperformed MLS in both solution precisionand

the CPU time. Figure 4(a) visually compares the errors in the solutions produced by our algorithm

and MLS. Our algorithm clearly produced solutions with much smaller errors than MLS.

Referring to Table 4, our algorithm produced a solution for the problem Benchmark i1 with an

aggregate violation of 0.0081while MLS produced a solution with accumulative error of 0.22084

for the same problem. Other examples in Table 4 show even much betterprecision in the solutions

produced by our algorithm. For instance, our algorithm produced solutions for Combustion

52 Computer Science & Information Technology (CS & IT)

Application (10) and Economics modeling application(10) with aggregate violations of

respectively2.66E-9 and 5.10E-15 while MLS produced solutions with violations of respectively

0.01506 and 0.00294 for the same problems.

(a): Comparing the amount of error in solution of each of the problems. The higher the bar the larger the

error and the worse the solution is.

(b): The time performance for our algorithm and MLS.

Figure 4: The plot of performance numbers of our technique versus MLS

Figure 4(b)visually compares the timing numbers of our algorithm versus those of MLS.

Generally speaking, our algorithm performed better than MLS. Our technique required much less

time to produce solutions for all the problems than MLS did. Referring to Table 4, our algorithm

required only 190 milliseconds to produce a solution for Benchmark i5 problem while MLS

required 1000 milliseconds. Other numbers in the same table clearly show that our technique

required less time in all the problems.

The authors in [6] proposed an effective algorithm called Algorithm 2.4. They compared their

algorithm against a large number of algorithms and showed its superiority to the others. The

comparison is based on the following two problems [6].

Computer Science & Information Technology (CS & IT) 53

Problem (1)

3) 2, 1, =(i

sin)xx-(x+xx+cosx+sinxx-cos-x=F

)xx-sin(x-)sin-(sinxx-)cos-(cosx=E

where,

0=])xx-cos)(xx-sin(x-)xx-sin)(xcosx+[(1

-1)]-cos(xE-)cosx+(1[F+)]x-sin(xF-)x-sin(x[E

02133102i32i2i

13i20i320i2i

2

13i23i213i2i2

2

i2ii2i

2

3i2i3i2i

ψψψψ

φφφφφ

ψφψφ

ψφφψ

Where the values of φi and φi are given in the following table [6].

Problem (2)

The Combustion Application problem as defined in Table 2. They used the interval [0, 1] for all

the variables instead of [-10, 10].

 Our algorithm Algorithm 2.4 [8]

Test Case EC Time (ms) Accuracy Time (ms)

Problem (1) 4.3E−72 62 3.6E−90 125

Problem (2) 1.6E−52 211 5.9E−89 484

Table 5: The performance of our algorithm versus Algorithm 2.4

As Table 5 shows, our algorithm outperformed Algorithm 2.4 in terms of CPU time. We used

different measure to estimate the aggregate violation. Therefore, it is not possible to compare the

precision.

Authors in [21] presented conjugate direction flower pollination algorithm (CDFPA)and

compared the performance of this algorithm with other algorithms such as flower pollination

algorithm (FPA) and conjugate direction (CD) method. Based on the reported results in [21], the

CDFPA performed better than the others. Table 6 shows the cases and the performance of our

algorithm versus CDFPA. The entry "-" means no reported performance numbers and "" means

close but not equal to. It is clear from the table that our algorithm performed better than CDFPA.

Our algorithm found the exact solution in all cases while CDFPA found the exact solution for

only one case and approximated solution for the rest. No timing figures reported for CDFPA to

compare against.

Cases
Our algorithm CDFPA

EC CPU time (ms) Precision CPU time

Case1
x1+ 0.99x2 = 1

0.99x1 + 0.98x2 = 1
0 1011 0 -

Case 2
H . x = b

hij=1/(i+j-1)
0 205 ≈ 0 -

54 Computer Science & Information Technology (CS & IT)

∑
=

=
5

1

.
j

iji jhb , i=1..5

Case 3
200x1+ 101x2 = 100

400x1 + 201x2 = −100
0 672 ≈ 0 -

Case 4

x1
2
 -2x1 +3x2 = −1

2x1
2
 – 3.9999x1

+6.0001x2= − 1.9999

0 13615 ≈ 0 -

Table 6: the performance of our algorithm versus CDFPA

Finally we compare our algorithm with the one proposed in [20]. Table 7 shows the systems of

equations and the performance of our algorithm compared to that of the algorithm in [20]. Clearly

our approach produced better precision. No timing numbers are reported in [20] to compare

against.

Equations Interval

Error in solution

Our

method

Algorithm[20]

“MinError”

[-10, 10] 4.5E-9 5.09E−05

[-5, 5] 0 0

09369
12

)3)(2(

12

0165)2)(2(

3

3231

3

21

323121

=−
−−

−

=−−−−

xxxxxx

xxxxxx

06835
2

)()(2

312

3

2

31

2

32 =−
−+

−−

xxx

xxxxx

[-40,40] 5.8E-10 8.3E−04

0)cos(

0)sin(

21

2

2

2

1

21
21

=+−

=+−−

xxxx

xxe
xx

[-10, 10] 3.1E-14 3.93E−07

Table 7: The performance of our algorithm verses [20].

Note on the Constraint Violation Measure

Our technique outperformed other techniques in terms of time, precision (measured in terms of

the aggregate violation EC), or both. Furthermore, we measure the aggregate violation as the sum

Computer Science & Information Technology (CS & IT) 55

of absolute values of the violations in each individual constraint while others measure the

violation in terms of square root of the sum of the square of the individual violation. Our measure

of violation is therefore more rigorous than theirs. That is because it can be easily shown that

∑ ∑
= =

≥
n

i

n

i

iii

c
XfXi

1

2

1

))((|)(| ρ ∀Xi.

According to this, our technique would have shown even significantly higher precision if we used

the same constraint violation measure as the others

5. CONCLUSION AND FUTURE WORK

This paper proposed effective approach to find solutions for systems of linear and non-linear

equations. Our approach transforms the problem of solving systems of equations into an

optimization problem. Our transformation results in an aggregate violation function whose global

minimum is the solution for the system of equations. The transformation defines also a criterion

function that effectively determines when the aggregate function must be evaluated.

The paper proposed random-guided algorithm to find the solution for the optimization problem

and therefore to the corresponding system of equations. The algorithm uses one principal and two

marginal directives that effectively search for the global minimum of the optimization problem.

These three directives are augmented with biased mapping rules that enable the algorithm to

focus the search in the parts of the domain that most likely contain the global minimum without

ignoring the other parts of the domains that may contain the minimum.

We conducted many experiments to evaluate our approach. The experiments showed that our

proposed technique is very effective in finding solutions with high precisionand high speed. We

also compared our algorithm with state-of art algorithms. Our algorithm has better performance in

terms of both the solution precision and the CPU time.

We have two directions for future work. First, we would like to conduct more experiments to

analyze the effect of tuning the parameters of the algorithm (α,β, d) on its performance. Second,

we would like to check the advantage of parallelizing the algorithm so that we can run more than

one version of the algorithm using different centers for the directives.

REFERENCES

[1] A. Pourrajabian, R. Ebrahimi, M. Mirzaei &M.Shams ,(2013)“Applying Genetic Algorithms for

Solving Nonlinear Algebraic Equations”, Applied Mathematics and Computation, Vol. 219, No. 24,

pp. 11483–11494.

[2] Angel Fernando Kuri-morales&Autónomo México, (2003) “Solution of simultaneous non-linear

equations using genetic algorithms”, WSEAS Transactions on Systems, Vol. 1, No. 2, pp. 44–51.

[3] S. Effati& A. R. Nazemi, (2005) “A New Method for Solving a System of Nonlinear Equations”,

Applied Mathematics and Computations, Vol. 168, No. 2, pp. 877–894.

[4] S. Abbasbandy, P.Bakhtiari, A. Cordero&T.Lotfi, (2016)“New efficient methods for solving

nonlinear systems of equations with arbitrary even order”, Applied Mathematics and Computation,

Vol. 103, pp. 94–103.

56 Computer Science & Information Technology (CS & IT)

[5] C. Grosan& A. Abraham, (2008)“A New Approach for Solving Nonlinear Equations Systems”, IEEE

transactions on systems, man, and cybernetics, Vol. 38, No. 3, pp. 698–714.

[6] M. Waseem, M. A. Noor, & K. I. Noor, (2016)“Efficient Method for Solving a System of Nonlinear

Equations”, Applied Mathematics and Computation, Vol. 275, pp. 134–146

[7] F. Awawdeh, (2010) “On New Iterative Method For Solving Systems Of Nonlinear Equations”,

Numerical Algorithms, Vol. 54, No.3, pp. 395–409.

[8] M.A. Noor, M. Waseem, K.I. Noor & M.A. Ali, (2015) “New Iterative Technique for Solving

Nonlinear Equations”, Applied Mathematics Computation, Vol. 265, pp. 1115–1125.

[9] M. Y. Waziri, W.J. Leong, M. A. Hassan &M. Monsi, (2010) “A New Newton Method with Diagonal

Jacobian Approximation for Systems of Non-Linear Equations”,Journal of Mathematics and Statistics

Science Publication, Vol. 6, No. 3, pp. 246–252.

[10] F. S. Emmanuel, (2015)“On Some Iterative Methods for Solving Systems of Linear Equations”,

Computational and Applied Mathematics Journal, Vol. 1, No. 2, pp. 21–28.

[11] B.K. Ibrahim, (2010)“A Survey of three Iterative Methods for the Solution of Linear Equations”,

IJNM. Vol. 5, No. 1, pp. 153–162.

[12] P. Y. Nie, (2004)“A Null Space Method for Solving System of Equations”, Applied Mathematics and

Computations, Vol. 149, No. 1, pp. 215–226.

[13] M. K. A. Ariyaratne, T. G. I. Fernando & S. Weerakoon, (2016) “A Self-tuning Modified Firefly

Algorithm to Solve Univariate Nonlinear Equations with Complex Roots”, IEEE Congress on

Evolutionary Computation (CEC), Vancouver, BC, pp. 1477–1484.

[14] C. Grosan, A. Abraham, & V. Snasel, (2012)“Solving Polynomial Systems Using A Modified Line

Search Approach”, International Journal of Innovative Computing, Information and Control, Vol. 8,

No. 1, pp. 501–526.

[15] P. Van Hentenryck, D. McAllester& D. Kapur, (1997) “Solving Polynomial Systems using a Branch

and Prune Approach”, SIAM Journal of Numerical Analysis, Vol.34, No.2, pp.797–827.

[16] Y. Li, Y. Wei& Y. Chu, (2015) “Research on Solving Systems of Nonlinear Equations Based on

Improved PSO”, Mathematical Problems in Engineering, Vol. 2015, 13 pages.

[17] J. L. Hueso, E. Mart´ınez& J. R. Torregrosa, (2009)“Modified Newton’s Method for Systems of

Nonlinear Equations with Singular Jacobian”, Journal of Computational and Applied Mathematics,

Vol. 224, No. 1, pp. 77–83.

[18] C. Qu& W. He, (2015) “A Double Mutation Cuckoo Search Algorithm for Solving Systems of

Nonlinear Equations”, International Journal of Hybrid Information Technology Vol.8, No.12, pp.

433–448.

[19] E. Pourjafari&H. Mojallali, (2012)“Solving Nonlinear Equations Systems with a New Approach

Based on Invasive Weed Optimization Algorithm and Clustering”, Swarm and Evolutionary

Computation, Vol. 4, pp. 33–43.

[20] K. A. Sidarto& A. Kania, (2015) “Finding All Solutions of Systems of Nonlinear Equations using

Spiral Dynamics Inspired Optimization with Clustering”, Journal of Advanced Computational

Intelligence and Intelligent Informatics, Vol.19 No.5, pp. 697–707.

[21] M. Abdel-Baset& I. M. Hezam, (2016) “A Hybrid Flower Pollination Algorithm for Solving Ill-

Conditioned Set of Equations”, International Journal of Bio-Inspired Computation, Vol. 8, No. 4, pp.

215–220.

Computer Science & Information Technology (CS & IT) 57

[22] E. Rushdy, M. Abdel-Baset& I. M. Hezam, (2017)“Solving Systems of Nonlinear Equations via

Conjugate Direction Flower Pollination Algorithm”, International Journal of Computing Science and

Mathematics, Vol. 8, No. 3, pp. 201–209.

[23] X. Wang & X. Fan, (2016) “Two Efficient Derivative-Free Iterative Methods for Solving Nonlinear

Systems”, Algorithms Journal, Vol. 9, No. 1, pp. 9–14.

AUTHOR

Dr. Muhammed Jassem Al-Muhammed holds PhD in computer science,

Brigham Young University, USA, 2007. I joined American university of Madaba

(Jordan), faculty of information technology in 2013. Prior to this, I worked as a

faculty member in Damascus University and international university for science

and technology, Syria. Al-Muhammed has published many conference and

journal papers. Most of his research interest is in computer security (including

cryptography, access control, and so on), problem optimization, and semantic

web. Al-Muhammed has also authored many books in different computer fields.

