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ABSTRACT 
 

Although many methods have been proposed for solving linear or nonlinear systems of 

equations, there is always a pressing need for more effective and efficient methods. Good 

methods should produce solutions with high precision and speed. This paper proposed an 

innovative method for solving systems of linear and nonlinear equations. This method 

transforms the problem into an optimization problem and uses a probability guided search 

technique for solving this optimization problem, which is the solution for the system of 

equations. The transformation results in an aggregate violation function and a criterion 

function. The aggregation violation function is composed of the constraints that represent the 

equations and whose satisfaction is a solution for the system of equations. The criterion function 

intelligently guides the search for the solution to the aggregate violation function by 

determining when the constraints must be checked; thereby avoiding unnecessary, time-

intensive checks for the constraints. Experiments conducted with our prototype implementation 

showed that our method is effective in finding solutions with high precision and efficient in 

terms of CPU time. 
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1. INTRODUCTION 
 

Systems of linear or non-linear equations are ubiquitous. They frequently result from modeling 

problems in many important domains such as engineering, robotics, business, and many more. 

Therefore, finding effective and efficient methods for finding simultaneous solutions for these 

equations is extremely and practically important to study the properties of the problems modeled 

by these equations. 

 

The desirable properties of the solution methods are the effectiveness and efficiency. The method 

must be effective in producing a solution with high precision. It must also produce the solution 

for the problem in a minimum time and resources requirements.  

 

Researchers have proposed many methods for solving systems of equations [1][7][8] (see [5] for 

a good discussion of these methods). These methods either solve the equations directly by 
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applying numerical methods [4][9][10][11][17][23] or solve them indirectly by transforming the 

system of equations into problem optimization [2][3][4][5][12][16][19][22]. 

 

This paper offers a technique for solving systems of linear or nonlinear equations. The technique 

indirectly solves a system of equations by solving an optimization problem. Each equation in the 

system is considered a constraint. These constraints are combined, in a way to be made precise 

later, into a non-negative function, called aggregate violation function. This function measures 

the collective amount of violation caused by some substitution to the parameters of the 

constraints. Thus, a substitution for which the aggregate violation function evaluates to zero is the 

solution for the system of equations because this substitution satisfies all the constraints (i.e. the 

equations). 

 

The proposed technique goes even further by creating a function, called a criterion function, 

whose main objective is to identify whether some substitution is promising (results in a better 

value for the aggregate violation function) or not. The criterion function is created using the 

systems of equations in such a way that, as will show later, its computational demand is much 

less than the computational demand of the aggregate violation function. This function controls the 

process of evaluating the aggregate violation by permitting this evaluation at some substitution 

only when this substitution is promising. Our technique therefore saves the time required for 

blindly evaluating the aggregate violation function on every possible substitution and 

consequently increases its efficiency. 

 

To solve the optimization problem, we propose a probability-guided algorithm that uses random 

numbers and biased mapping to quickly direct the search to the parts of the variables’ domains 

where the solution resides. The algorithm also makes use of the criterion function to intelligently 

direct the search in such a way that the method avoids unnecessary checks of the constraints. 

 

The paper makes the following contributions. First, it offers an effective algorithm for problem 

optimization. Second, it offers effective transformation from systems of equations to optimization 

problem. This transformation produces a very rigorous aggregate violation function whose 

satisfaction results in high precision solutions of the equation systems. Third, the transformation 

produces a light-weighted criterion function that quickly determines if the aggregate violation 

function must be checked or not, thereby avoiding unnecessary time consuming checks of the 

aggregate violation. 

 

We present our contribution as follows. Section 2 describes the problem formalization, which 

transforms the solution to systems of equations to the solution of problem optimization. In section 

3, we discuss the proposed algorithm and its technical details. Section 4 presents our experimental 

evaluation of the proposed technique. We conclude and give directions for future work in sections 

5. 

 

2. THE PROBLEM FORMALIZATION 
 
In this section we formalize the problem of solving a system of equations. We present some 

fundamental concepts in subsection 2.1 and show our formalization in subsection 2.2. 

 

2.1 PRELIMINARIES 

 

Consider the following system of equations: 
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   (1) 

 

We rewrite the system (1) as the following set of constraints 

 

C = a x + a x +...+ a x = b 1 1 2 2 (i = 1, 2, …, n)     (2) 

 

The terms 
i

ja and bi (i, j= 1, …n)are constants and xi's are variables. The variables xi'scan be of 

any power (not necessarily linear) or even functions (sine, log, etc.). We represent them as in (2) 

just to simplify the presentation. A solution to the set of equations is a substitutionX*(
**

2

*

1 ,...,, nxxx ) for the variables xi's such that all of the constraints C
i
 hold. 

 

We associate with the constraints (2) a function f(x1, x2, …,xn), which is defined bysumming all 

the constraints C
i
 and taking the absolute value for the resulting sum. The variables xi'swith the 

same index and power are combined together. Consider for instance the following system of 

equations. 

 

 
 

We sum these three constraints to yield the following function f(x1, x2, x3). 
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Observe that the variables x1 of powers 1 are summed to yield 4x1 and the variable x1 of
 

power 2 are summed together and so on. 

 

According to this, we create the function f(x1, x2, …,xn) from the equations (1) by adding together 

the variables with the same index and with the same power. The addition yields the function (3). 
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   (3) 

 

Let ),...,,( 21

i

n

iii
xxxX  be a possible substitution. We define the degree of the violation caused by 

the substitution X
i
 to some constraint C

k
 by: 

 

|...|)( 2211 k

i

n

k

n

ikikik
bxaxaxaX −+++=ρ

 

 



38 Computer Science & Information Technology (CS & IT) 

It should be clear that the degree of the violation is zero (i.e. no violation) when the substitution 

Xisatisfies the constraint Ck. The degree of the violation is positive if Xi does not satisfy the 

constraint Ck. Therefore, greater values of ρk(Xi) indicate a large violation of the substitution 

Xito the constraint Ck. 

 

We in addition define the aggregate violation of the substitution X
i  

to all of the constraints C
i
 as 

follows 

 

)()(
1

i
n

k

kic XXE ∑
=

= ρ
 

 

That is, the aggregate violation of some substitution X
i 
is the sum of the violations of X

i
 over all 

the constraints. The aggregate violation is zero only if X
i
 satisfies all the constraints. Greater 

values of the aggregate violation E
c
(X

i
) indicate a greater violation for a constraint or more. 

 

We emphasize that function f(x1, x2, …,xn) is completely different from the aggregate violation 

E
c
(X

i
). The following example shows the difference between them. 

 

Example (1): consider the following two linear equations whose solution is X (1, 1). 

 

2x1 + x2 = 3 

−x1 + x2 = 0 

 

By summing these two equations and take the absolute value we obtain the function ),( 21 xxf = 

|x1 + 2x2− 3|. Let X(0, 1.5). It is clear that )5.1,0(f equals to zero while E
c
(X) is not equal to zero. 

That is, E
c
(0, 1.5) = |(2(0) + 1.5 – 3)| + |– (0) + 1.5 – 0| = 3. 

 

For most of the systems of equations (especially the systems of linear equations), there is a large 

number of common variables between the equations. For such systems the function f (x1, x2, …, 

xn) is likely to have fewer number of variable substitutions than the original constraints because 

the common variables are combined by the summation. The function f (x1, x2, …,xn) demands 

therefore less computation than the aggregate violation function does for such systems. On the 

other hand, even if there are few (or even none) common variables, the function f(.) still demands 

less computation than the aggregate violation. That is because it computes the absolute value only 

one time while the aggregate violation function computes the absolute value for each constraint. 

 

Proposition (1): Let
iX ,

jX betwo possible substitutions for the aggregate violation function. If f(
iX ) >

cE (
jX ), it cannot be the case that

cE (
iX ) <

cE (
jX ).This is represented 

mathematically as f(
iX )>

cE (
jX )⇒/

cE (
iX ) <

cE (
jX ). 

 

Proof 
 

The proof of this proposition is straightforward and follows directly from the definition of the 

function f(.) and the aggregate violation function.  
 

Suppose that )( iXf > )( jc XE . Since )( iXf < )( ic XE based on the definition of both f(.) and 

E
c
(.) and the properties of the absolute value, we conclude that )( ic XE > )( jc XE .� 
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Proposition (1) precisely defines the relationship between the aggregate violation E
c
(.) and the 

function f(.). For any substitution X
i
, if the value of the function f(X

i
) is larger than the value of 

the aggregate violation at some previous substitution X
j
, the substitution X

i
 will not satisfy the 

constraints better than X
j
; that is X

i
 will not reduce the value of the aggregate violation. Given 

this, the function f(.) can be used as a precondition for checking the constraints at some X
i
. 

Namely, the constraints should not be checked at any substitution X
i
 for which proposition (1) 

 

holds. Observe if the substitution X
i
 does not satisfy proposition (1) (i.e. )( iXf ≤ )( jc XE ), it is 

not necessary that X
i
 reduces the constraints violations (reduce the aggregate violation). 

 

We therefore call the function f(.) a criterion function. It is called so because it guides the process 

of whether we should evaluate the aggregate violation or not at some substitution
iX . 

 

2.2 PROBLEM TRANSFORMATION 
 

Given the aggregate violation of the constraints )( ic XE and the criterion function f(X
i
), we 

formalize the problem of solving the system (1) as follows. Rather than solving the system of 

equations per se, we indirectly solve it by solving the following optimization problem. 

 

Minimize )()(
1

i
n

k

kic XXE ∑
=

= ρ  

Guided by the criterion function: 
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            (4) 

 

According to the definition of the aggregate violation E
c
(X

i
), it is clear that the global minimum 

of E
c
(X

i
) is zero. Therefore, if E

c
(X

i
) = 0 for some substitution

iX , this substitution is the global 

minimum for the optimization problem (4). This substitution X
i
 is also an exact solution for the 

system (1) because it violates no constraint (i.e. satisfies all the equations in system (1)). If, 

however, E
 c

(X
i
) > 0, the substitution X

i
 is not the global minimum for the optimization problem 

(4). This substitution X
i
 is not an exact solution for the system (1) either due to the constraint 

violation (i.e. one or more of the equations in system (1) not satisfied). Furthermore, it can be 

easily shown that if the substitution X
i
 is an exact solution for the system (1), it is not the global 

minimum for the optimization problem (4) either. According to this discussion, a substitution X
i
 

is a solution for the system (1) if and only if it is the global minimum for the optimization 

problem (4).  

 

The criterion function f(x1, x2,…,xn) plays an extremely important role in the process of 

optimizing the problem (4);and equivalently finding a solution for the equations (1).It 

intelligently instructs the solver when the constraints must be checked for some substitution X
i
. 

Blindly checking the constraints for every possible substitution X
i 
has a negative impact on the 

performance of the solver since this check is computationally intensive especially if we have a 

large number of these constraints. Generally speaking, the criterion function f(.) greatly improves 

the solver’s performance by allowing this solver to check the constraints only when it should. 
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3. THE HIT-HIT MOVING DIRECTIVES ALGORITHM 
 

We propose an algorithm, called Hit-Hit Moving Directives (HHMD-3), for solving 

unconstrained optimization problem (4). HHMD-3 is a probability-directed search technique that 

finds the global optimum (minimum or maximum)for unconstrained optimization problems such 

as the one in (4). This algorithm utilizes sequences of random numbers to search for the global 

optimum within the domains of the variables. It defines three directives over the unity interval [0, 

1] as shown in Figure 1. These directives are a principal directive and two marginal directives. 

The principal directive covers part of the unity interval, which we call the effective search 

interval (ESI). The marginal directives cover the remaining part of the unity interval, which we 

call the marginal search intervals (MSI).The principal directive is centered at the point Ci of the 

unity interval and has a radius qi. The two marginal directives (left and right) are defined in the 

rest of the interval with the radius (1- 2qi).The role of these directives is to guide the search in the 

domains of the variables and quickly locate the global minimum for the problem.  In particular, 

the principal directive biases the search to the parts of the domains where the global minimum is 

more likely to reside. The two marginal directives guarantee that if the global minimum is not 

within the effective search interval, the technique can escape being caught within this interval and 

there for missing the global minimum. 

 

 

Figure 1: The principal directive (shaded) and two marginal directives on the sides. 

 

The principal and marginal directives are fully defined by their parameters Hi and hi (heights) 

and the radius (qi). The heights are given by formulas (5). 
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Where α and β belong to the interval [0, 1] and α + β =1.The number ε is a sufficiently small real 

number (e.g. 1E−300), called the adjustment factor. Given that the value of qi∈(0, 0.5], the role of 

the adjustment factor is to guarantee that the denominator of hi will never be zero and therefore hi 

becomes undefined. 

 

Referring to formulas (5), we can easily observe that Hi*(2qi) = α + |β−qi| is the area of the 

principal directive. Likewise, hi*(1−2(qi−ε)) = β−|β−qi| is the area of the two marginal directives. 

This means that the area of the principal directive is at least α while the area of the two marginal 

directives at most β. It is clear that the sum of the areas of the three directives equals 1. Note that 
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we can increase the area of the principal directive by increasing α and increase of the marginal 

directives by increasing β. Additionally, decreasing the radius qi enlarges the area of the principal 

directive and reduces the area of the two marginal directives. 
 

Definition (1) 
 

1We make two clarifications. 1) We call the part of the interval that is covered by the principal 

directive the effective search interval because it has the global optimum with a high probability. 

2) For the purpose of this paper, we mean by "global optimum" the minimum value (zero) of the 

aggregate violation.

  

Let P
M

be the probability that some random number γ∈[0, 1] belongs to the base of the principal 

directive and P L
and P R

be the probability that γ belongs to the bases of the left and right 

directive respectively. We define these probabilities by the following formulas. P
M

= Hi*(2qi) and 

P
L
 = hi*(ci-qi) and P

R
 = hi*(1-ci-qi). Where ci is the center of the principal directive and qi is its 

radius. 

 

Observe that definition (1)bases the probability on the area of the directive. That is, the larger the 

area of a directive is the larger the likelihood that γ will belong to the base of this directive. Since 

α and β represent respectively the lower and upper bounds of respectively the principal and 

marginal directives areas, we can increase the probability of having some random number belong 

to the base of principal directive by increasing α. Since α + β = 1, this means as the probability of 

having a random number belong the base of the principal directive increases the probability that 

this random number belongs to the bases of the marginal directives decreases. In other words, α 

and β allow us to fully bias random numbers toward the bases principal or marginal directives. 

 

The values for α and β are determined based on the criteria of biasing the probability toward the 

principal directive without totally ignoring the marginal directives.  Since the minimum bound of 

the principal directive is α, any value for α>0.5 would cause more bias toward the principal 

directive base (or the effective search interval). During our preliminary experiments to tune the 

values of α and β, we found that α= 0.75 and β =0.25 are very rational choices because they 

quickly derive the search to optimal solution. 

 

Given the principal and marginal directives, we define the biased mapping between the interval 

[0, 1] and the bases of the directives by the mapping rules in Figure2. As the figure shows, 

mapping a random number ψ∈[0, 1] to the bases of the principal or marginal directives is actually 

proportional to the area of the directives. Specifically, the algorithm comparesψi to the areas of 

the left and right directives and mapsψi to base of either the left directive if the comparison in 

lines 2, 6 succeeds or to the base of the right directive if the comparison in lines 3, 5 succeeds. It 

mapsψi to the base of the principal directive in lines 4 or 7 otherwise. 

 

Based on the discussion, it is clear that any random number ψI either hits the base of the principal 

or the bases of the marginal directives. That is why we called the algorithm hit-hit algorithm. 
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(1) IFCi< 0.5 THEN 

(2) IF iψ <P
L 

THEN iγ = iψ / hi 

(3) ELSEIf iψ <(P
L
+P

R
) THEN iγ = iψ / hi + 2qi 

 

(4) 
ELSE iγ = ii

i

i qC
H

RiLi
−+

+− ))((2 ψ
 

(5) ElseIF iψ <P
R
THEN iγ = ( iψ /hi)+ iC + qi 

(6) ELSEIF iψ < (P
L
+P

R
) THEN iγ =( iψ / hi) + iC + qi – 1 

(7) ELSE iγ = ii

i

i qC
H

RiLi
−+

+− ))((2 ψ
 

Figure2: the rules of the biased mapping from [0, 1] to principal/marginal directives 

 

3.1 THE TERMINATION CONDITIONS 
 

Let  and  be the two substitutions of the variables x1, x2, …,x n in two consecutive rounds i and 

i+1. Suppose also that Ec (Xi) and Ec(Xi+1)are the best values for E c in the rounds i and i+1 

respectively.  We define the termination conditions as follows. 

 

                             (6) 

 

Where δ is sufficiently small number (e.g. 1E−100). The termination condition means that the 

value of the aggregate violation does not change for two consecutive rounds i and i+1. If this 

condition holds, the search for the global minimum (zero) has reached an equilibrium point and 

no improvement can be achieved if the algorithm continues the search. 

 

3.2 THE ALGORITHM TECHNICAL DETAILS 
 

Figure 3 shows the technical details of the algorithm. The algorithm searches the domains of the 

parameters X
i 
for values that bring the aggregate violation function E

c
 (X

i
)to its minimum (zero). 

It performs a number of rounds until the termination condition (6)holds. In any round j, the 

algorithm conducts many experiments each of which consists of m steps. In each step, it generates 

n random numbers ψiin the interval [0, 1] using the computer built-in random generator and uses 

the biased mapping rules (Figure 2) to map each random number to the bases of one of the 

directives (principal or marginal). The mapping yields new biased random numbers γi (lines 

9−11). The algorithm uses the biased mapping to focus most of the search in the principal 

directives since these directives cover parts of the domain sin which the global minimum most 

likely resides. The biased mapping, however, does not ignore the marginal directives that cover 

the remaining parts of the domains. Thus, the biased mapping never causes the algorithm to miss 

the global minimum or get trapped in a local minimum.  

 

The values γi's are mapped to the actual domains ([ai, bi]) of the variables X
i
 using the formula in 

line 12. For each randomly created substitution for the variables X
i
, the algorithm computes the 

value of the criterion function (line 13).If the new substitution satisfies the condition in line 14, 

this substitution is promising and therefore, the algorithm computes the aggregate violation at this 

substitution (line 15). If the calculated value better than the previous minimum stored in VE
c
, the 

algorithm stores the new minimum along with the following fundamental information: the 
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substitution itself and the random values γi's from which the substitution was generated(lines 

17−19).  

 

After performing m steps, the algorithm reduces the radiuses of the principal directives using the 

reduction formula ∀iqi =qi/d, where d>1 (lines 21-23). The algorithm performs another 

experiment if at least one of qi’s is still greater than some pre-specified threshold ε (typically ε is 

less than 1E−60).  

 

We make two important points regarding qi reduction formula and its effect on the algorithm 

convergence. First, the reduction factor d can be theoretically any real number greater than 1. 

Greater values of d cause the algorithm to converge faster because it quickly reduces the radiuses 

of the principal directives. We tested our algorithm for only four different values of d, namely 

1.2, 1.5, 1.8, and 2. All these values cause the algorithm to converge quickly irrespective of the 

formula that defines the aggregate violation, although the time of convergence becomes relatively 

 
1
The best value for E

c
 in round j is the one that yields the closest value to zero in this round 

 

shorter as d increased from 1.2 to 1.5 to 2.  No tests were made for d greater than 2.  Secondly, 

referring to formula 5, it is clear that as the algorithm further reduces qi, the areas of the principal 

directives increase and the areas of the marginal directives decrease. This means that more points 

are mapped to the bases of the principal directives and fewer points to the bases of the marginal 

directives. In other words, reducingqi plays the major role in greatly focusing the search to the 

principal directives (where the global minimum most likely is located). Therefore, the effective 

intervals are thoroughly searched because (1) their radiuses continuously reduce and (2) more 

points mapped to them 
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1 FORi← 1 to nDO 

2 Ci = 0.5/**initialize centers of principal directives */ 

 

3 

qi = Ci/** initialize radiuses of principal directives*/ 

4 cVE = ∞/** initially the aggregate violation of the constraints is so large */ 

5 REPEAT 

6 j = 1 

7 WHILE (qi>ε for anyi) DO 

8 FORk← 1 to mDO/** m steps in each experiment */ 

 

9 
FORi← 1 to nDO 

10 Generate a random number ψi  ∈ [0, 1] /**Random numbers generated*/ 

 

11 
γi = MAP (ψi) using the logic in Figure 2 

12 )( iiii

j

i abax −+= γ /**map the random number to actual variable interval*/ 

13 F = f( )...,,, 21

j

n

jj xxx /** compute the criterion function f at
j

ix */ 

14 IFF<
cVE THEN 

15 F=E
C

( )...,,, 21

j

n

jj xxx )/**compute the aggregate violation function*/ 

16 IFF<
cVE THEN 

 

17 

cVE  = F 

18 (min =jX )...,,, 21

j

n

jj xxx  

19 )...,,,( 21min n

j γγγ=Ω  

20 ENDFOR (K) 

21 FORi← 1 to nDO 

22 qi = qi/d/**reduce the radius qi by d*/ 

23 Compute Hi and hi using formulas(5) 

24 ENDWHILE (qi >ε, for anyi) 

25 FORi← 1 to nDO 

26 Ci = γi 

27 IFCi<=0.5 qi = Ci 

28 ELSEqi = 1- Ci 

29 j= j + 1 

30 UNTIL Termination Condition (6) holds. 

 

31 
END ALGORITHM 

 

Figure 3: the technical steps of the Hit-Hit moving directives algorithm (HHMD-3). 
 

In any subsequent round j, the algorithm uses the information of the previous round j−1 to 

dynamically adjust the parameters of the directives. In particular, the algorithm moves the centers 

of the principal directives Ci’s to the values γi’s, which produced the best minimum in the 

previous round, and calculates the new radiuses qi’s (lines 25–28). The algorithm moves the 

centers to these values because there is a high probability that the search finds values for the 

variables that improve the minimum of the aggregate violation in the vicinity of the random 

numbers γi’s. 

 

 

 

Keep the so-far best minimum in 

round j along with the values of its 

variables and the random numbers 

that produced this value. 

Move the centers of the principal 

directives to the new points that have 

resulted in the best minima in round j 
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4. PERFORMANCE ANALYSIS 
 

We implemented our algorithm using JAVA programming language. We conducted many 

experiments using our prototype implementation to evaluate the effectiveness and efficiency of 

our algorithm. The experiments were conducted on a large number of systems of linear and non-

linear equations obtained from benchmarks[5][14][15] and others.The hardware platform is Duo 

core processor laptop running at 1.7 GH with main memory of 2GB. The operating system is 

windows 7 (32 bits). 

 

We start our analysisby studying the performance of our algorithm on samples of systems with 

few but challenging equations obtained from [16][17]. Table 1 shows these systems and the 

domains of their variables. It shows also the performance of our algorithm measured in terms of 

both the aggregate violation EC (i.e. the precision of the solutions) and the CPU time in 

milliseconds (ms). 

 

A sample of Systems Performance 

Equations Domain Aggregate violation EC CPU Time (ms) 

0)1(
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0)sin(8x-

3

3
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2
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03.17)sin()cos(2
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2

2

21

3
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3
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2

3

2

2

2

1

3
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2
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25.0

1(..2

0).sin(5.05.0
25.0

12
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2112
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eexex
e

xxxx

x

ππ

π  
[-10, 10] 4.45E−13 51 

02226424

01442244
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2

1

3

2

1

2

221

3

1

=−−++
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xxxxx

xxxxx  
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Table 1: The performance of the algorithm presented in terms of aggregate violation (EC) and CPU time in 

milliseconds (ms). 

 

According to the performance figures in the table, the algorithm performed really well. This is 

evident in both the aggregate violation (EC) and the CPU time. The highest aggregate violation is 

"7.5E07". The rest of aggregate violations are much less.This means that we have solutions 

with really high precision. As the CPU time shows, the algorithm required roughly "0.6" second 

or less for almost all the cases except one case for which the algorithm required about 3 seconds. 

This problem took 3 seconds because it is known to be so hard to solve. 
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Table 2 presents benchmarks obtained from [5][14][15]. The table shows the name of the systems 

of equations (label), the equations themselves, the number of variables, and the domains of the 

variables. Note, for the economics modeling applications, we considered systemsthat consist of 

up to 1000 variables while other algorithms consider only up to 20. 
 

Label System of Equations Variables domain 

Benchmark i1 

x1 − 0.25428722 − 0.18324757x4x3x9 = 0 

x2 − 0.37842197 − 0.16275449x1x10x6 = 0   

x3 − 0.27162577 − 0.16955071x1x2x10= 0  

x4 − 0.19807914 − 0.15585316x7x1x6 = 0 

x5 − 0.44166728 − 0.19950920x7x6x3= 0 

x6− 0.14654113 − 0.18922793x8x5x10 = 0 

x7− 0.42937161 − 0.21180486x2x5x8=0 

x8− 0.07056438 − 0.17081208x1x7x6 =0 

x9− 0.34504906 − 0.19612740x10x6x8 =0 

x10− 0.42651102 − 0.21466544x4x8x1 =0 

10 [-2, 2] 

Neurophysiology 

application 

x1
2
 + x3

2
 = 1  

x2
2
 + x4

2
 = 1 

x5x3
3
 + x6x4

3
 = c1  

x5x1
3
 + x6x2

3
 = c2  

x5x1x3
2
 + x6x4

2
 x2 = c3 

x5x1
2
x3 + x6x2

2
x4 = c4 

6 [-10, 10] 

Chemical 

equilibrium 

application 

x1x2 + x1 − 3x5 = 0  

2x1x2 + x1 + x2x3
2
 + R8x2– Rx5 + 2R10x2

2
 + 

R7x2x3 + R9x2x4 = 0  

2x2x3
2
  + 2R5x3

2
 − 8x5 + R6x3 + R7x2x3= 0  

R9x2x4+2x4
2
 − 4Rx5 = 0  

x1(x2 + 1) + R10x2
2
 + x2x3

2
 + R8x2 + R5x3

2
 + x4

2
 − 

1 + R6x3 + R7x2x3 + R9x2x4 = 0 

/400.00003846,40002155/0.0R

40.00001799/0,4003448/.00

4002597/0.0,193.0,10

109

87

65

==

==

===

R

RR

RRR

 

5 [-10, 10] 

Combustion 

Application 

 
 

10 [-10, 10] 
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Benchmark i4 

 

10 [-1, 1] 

Benchmark i5 

021466544.042651102.0

019612740.034504906.0

019612740.007056438.0

021180486.042937161.0

018922793.014654113.0

019950920.044166728.0

015585316.019807914.0

016955071.0227162577.0

016275449.037842197.0

018324757.025428722.0

7

1

4

8

3

1

3

8

3

4

2

10

7

8

4

6

3

8

3

6

3

10

2

9

7

6

4

7

3

6

3

7

3

1

2

8

7

8

4

5

3

8

3

5

3

2

2

7

7

10

4

5

3

10

3

5

3

8

2

6

7

3

4

6

3

3

3

6

3

7

2

5

7

6

4

1

3

6

3

1

3

7

2

4

7

10

4

2

3

10

3

2

3

1

2

3

7

6

4

10

3

6

3

10

3

1

2

2

7

9

4

3

3

9

3

3

3

4

2

1

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

=+−−

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

 

10 [-1, 1] 

Benchmark i2 

017949149.057001682.0

004417537.092894617.0

018114505.056003141.0

019838792.020436664.0

021037773.026516898.0

020920602.010607114.0

021790395.046588640.0

024475135.059642512.0

023556251.070561396.0

017221383.056896263.0

016522613.057596835.0

021241045.046896600.0

018180253.045937304.0

012384342.013128974.0

015724045.033565227.0

020198178.024711044.0

016497518.047620128.0

020177810.023939835.0

005612619.087528587.0

019594124.024863995.0

113120

1613719

813618

13102017

919416

109115

1031314

2016713

4111412

8171611

1391210

172139

1815198

1513127

1118166

16985

115124

117103

118182

161071

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

=−−

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

 

20 [-1, 2] 

Benchmark i3 
The same as Benchmark i2, but different interval 

for the variables. 
20 [-2, 2] 

Economics 

modeling 

application 01

)11(,0)(

1

1

1

1

=+

−≤≤=−+

∑

∑

−

=

−−

=

+

n

l

l

kn

i

knkiik

x

nkcxxxx
 

5, 20, 50, 

100, 200, 

300, 500, 

1000 

[-10, 10] 

Brown 

2x1+x2+x3+x4+x5− 6=0 

x1+ 2x2+x3+x4+x5−6=0 

x1+x2+2x3+x4+x5 −6=0 

x1+x2+x3+2x4+x5−6=0 

x1+x2+x3+x4+2x5−1=0 

5 [0, 3] 

 

Table 2: Systems of equations benchmarks. 
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Solutions Performance 

System Variable values EC Time (ms) 

Benchmark -i1 

x0=0.2638927436500653 

x1=0.380317066392982 

x2=0.2804250886510391 

x3=0.2132412203761027 

x4=0.44438239437353655 

x5=0.14944883430013256 

x6=0.433092499920527 

x7=0.06746428319148512 

x8=0.3469624642044846 

x9=0.39763460651053917 

0.0081 212 

Neurophysiology 

application 

x0=0.773073454805388 

x1=0.5765805512504851  

x2 = 0.6343165089155978  

x3 =−0.8170403098469485  

x4=3.7481129311345285E-13  

x5=3.822719918389339E-12 

1.79E−11 609 

Chemical equilibrium 

application 

x0=0.050958721835229426 

x1=1.748330139399421 

x2=0.2715118958827709  

x3=-0.8464707181498703 

x4=0.03582437318962839 

0.0325 670 

Combustion 

Application 

x0=7.885401512197632E-6  

x1=-6.287224145751225E-7 

x2=1.7216365890249108E-5  

x3=-5.111503458721245E-6 

x4=7.830654080720478E-6 

x5=1.526760066106192E-5 

x6=7.555224350141998E-6 

x7=1.2783895904533438E-5 

x8=-1.2757429127319142E-5 

x9=-3.574492433600085E-6 

2.66E−9 297 

Benchmark i4 

x0=-0.5077723973445423 

x1=0.615256474526175  

x2=-0.5279178631279993 

x3=0.44796092038237223 

x4=0.667271196118725 

x5=0.38625078626268783 

x6=0.6572653126601917  

x7=-0.2712236420769336 

x8=0.5881911765836603  

x9=-0.6537033315232845  

0.00281 203 

Benchmark i5 

x0=-0.501902791893752 

x1=0.6146257966533131  

x2=-0.5293855157439512 

x3=0.44456590561843945 

x4=0.6644074507239301 

x5=0.39586363376169453 

x6=0.6550747173991653  

x7=-0.2642942057821429 

x8=0.5874639200667668  

x9=-0.6531478452401633 

9.52E−5 190 

Benchmark i2 

x0=0.22065654006016544 

x1=0.6679777509246896 

x2=0.25308693662292403 

0.0655 834 
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x3=0.47593660216437894 

x4=0.3108760076620436 

x5=0.3420931417977098 

x6=0.14056743503862323 

x7=0.4777925690182352 

x8=0.49065449430132757 

x9=0.6113946257954175 

x10=0.5808035003270997 

x11=0.7524629539375702 

x12=0.5991667120015798 

x13=0.48572097680262116 

x14=0.12027902783234179 

x15=0.304471847407779 

x16=0.31235184663156956 

x17=0.5779178263400047 

x18=0.9308157797622583 

x19=0.5225894624268062 

Benchmark i3 

x0=0.25379644520356415 

x1=0.883043903677712 

x2=0.24808502738095983 

x3=0.4768828006356207 

x4=0.2618446169814348 

x5=0.3500860164569821 

x6=0.1379779091289688 

x7=0.47131924360702326 

x8=0.49682215346828507 

x9=0.6122399213932219 

x10=0.5097531602011571 

x11=0.7334022329597554 

x12=0.6024825313683912 

x13=0.48527132307332055 

x14=0.12222150380249319 

x15=0.3115283407139193 

x16=0.24650097840355523 

x17=0.5780392185924179 

x18=0.9300901851505055 

x19=0.5757777139250799  

0.06911 452 

Economics modeling 

application(5) 

x0=-0.35442260333596565  

x1=-0.23692868742035955  

x2=-0.14071376443385475  

x3=-0.26793494480927116 

x4=-5.844214001626824E-13 

9.21E−13 97 

Economics modeling 

application(20) 

x0=2.6989965817847406E-11 x1=-

1.0128786698260228E-11 

x2=7.263523116307624E-12 

x3=2.5082158572331537E-12 x4=-

2.169464607959526E-11 

x5=7.506884003305458E-12  

x6=-9.341860618405917E-12 x7=-

6.4712679659351124E-12 

x8=3.375077994860476E-12 

x9=-2.107469754264457E-11 x10=-

1.8065549056700547E-12 x11=-

2.1234569658190594E-11 x12=-

6.339817559819494E-12 

x13=1.8850698779715458E-11 

x14=-1.1876721828230075E-11 

7.10E−15 163 
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x15=-3.858247055177344E-12 

x16=-1.8186341321779764E-11 

x17=3.597122599785507E-12 x18=-

1.4916068380443903E-11 

x19=9.329426120530115E-12  

Economics modeling 

application(30) 

x0=1.438849039914203E-13  

x1=-3.126388037344441E-13 

x2=6.288303211476887E-13 

x3=5.258016244624741E-13  

x4=-6.057376822354854E-13 x5=-

3.979039320256561E-13 

x6=4.156675004196586E-13 

x7=3.0020430585864233E-13 x8=-

6.963318810448982E-13 

x9=1.2789769243681803E-13 

x10=6.394884621840902E-14 

x11=2.7000623958883807E-13 

x12=6.750155989720952E-14 x13=-

1.5276668818842154E-13 x14=-

5.080380560684716E-13 

x15=1.1723955140041653E-13 

x16=-6.377121053446899E-13 

x17=-3.2152058793144533E-13 

x18=-4.4231285301066237E-13 

x19=1.6697754290362354E-13 

x20=6.359357485052897E-13 x21=-

5.595524044110789E-13 x22=-

6.856737400084967E-13 x23=-

3.126388037344441E-13 x24=-

1.1546319456101628E-13 

x25=3.907985046680551E-14 x26=-

1.580957587066223E-13 x27=-

7.105427357601002E-15 

x28=5.666578317686799E-13 

x29=3.019806626980426E-13  

1.77E−15 249 

Economics modeling 

application(100) 
- 1.77E−15 645 

Economics modeling 

application(200) 
- 7.68E−14 2,046 

Economics modeling 

application(300) 
- 3.36E−14 2,938 

Economics modeling 

application(500) 
-  3.16E−14 11,099 

Economics modeling 

application(1000) 
- 5.13E−14 32,971 

Brown 

x0=1.0000000000000413 

x1=0.9999999999999537 

x2=0.9999999999999963 

x3=1.0000000000003915 

x4=0.9999999999995891 

5.11E−13 87 

 

Table 3: The performance numbers of our algorithm for the benchmarks in Table 2. 
 

Table 3 shows the performance of our algorithm for the systems in Table 2. The performance is 

presented in terms of values of the variables, the aggregate violations, and the CPU time in 

milliseconds.We did not show the values of the variables for the economics modeling application 
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when the number of the variables exceeds 30. Basically the values for these variables are pretty 

the same as for 30 variables or fewer.  

 

Based on the figures in Table 3, our algorithm produced solutions with high precision. The 

aggregate violations arexE−−−−9, xE−−−−11, xE−−−−14,and xE−−−−15 (x some real number) for most of the 

systems. For some of the systems, the accuracy was ranging from 7.43E-4 (Benchmark i5) to 

0.06911 (Benchmark i3). It is worth mentioning that our algorithm achieved highprecision for 

hard systems of equations: Chemical equilibrium application and Benchmark i2.  

 

To further discus the performance of our algorithm, we compared itwith highly effective 

algorithms in literature. The comparison includes both the CPU time and the precision of the 

solution (in terms of aggregate violation). Table 4 compares our algorithm and the Modified Line 

Search (MLS) [4]. The entry "-" in some of the table’s cells means that there is no reported 

performance for the corresponding system of equations. 

 

Benchmarks (variables) 
Our algorithm MLS (Modified Line Search) 

EC Time (ms) En Time (ms) 

Benchmark i1 (10) 0.0081 212 0.22084 516 

Benchmark i2 (20) 0.0655 834 0.60634 1,297 

Benchmark i3 (20) 0.06911 452 0.61134 1,016 

Benchmark i4 (10) 0.00281 203 0.20734 953 

Benchmark i5 (10) 9.52E-5 190 0.23610 1,000 

Neurophysiology application (6) 1.79E−11 609 0.01998 922 

Chemical equilibrium application 

(5) 

0.0325 662 

 

0.16072 922 

Combustion Application (10) 2.66E-9 297 0.01506 860 

Brown (5) 5.11E−13 87 - - 

Economics modeling application(5) 9.21E−13 97 - - 

Economics modeling 

application(10) 
5.10E−15 132 0.00294 266 

Economics modeling 

application(20) 
7.10E−15 163 0.00459 1,078 

Economics modeling 

application(30) 
1.77E−15 249 - - 

Economics modeling 

application(100) 
1.77E−15 645 - - 

Economics modeling 

application(200) 
7.68E−14 2,046 - - 

Economics modeling 

application(300) 
3.36E−14 2,938 - - 

Economics modeling 

application(500) 
3.16E−14 11,099 - - 

Economics modeling 

application(1000) 
5.13E−14 32,971 - - 

 

Table 4: The performance of our technique versus MLS. 

 

Table 4 and Figure 4 indicate that our algorithm outperformed MLS in both solution precisionand 

the CPU time. Figure 4(a) visually compares the errors in the solutions produced by our algorithm 

and MLS. Our algorithm clearly produced solutions with much smaller errors than MLS. 

Referring to Table 4, our algorithm produced a solution for the problem Benchmark i1 with an 

aggregate violation of 0.0081while MLS produced a solution with accumulative error of 0.22084 

for the same problem. Other examples in Table 4 show even much betterprecision in the solutions 

produced by our algorithm. For instance, our algorithm produced solutions for Combustion 
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Application (10) and Economics modeling application(10) with aggregate violations of 

respectively2.66E-9 and 5.10E-15 while MLS produced solutions with violations of respectively 

0.01506 and 0.00294 for the same problems. 

 
(a): Comparing the amount of error in solution of each of the problems. The higher the bar the larger the 

error and the worse the solution is. 

 

 
 

(b): The time performance for our algorithm and MLS. 
 

Figure 4: The plot of performance numbers of our technique versus MLS 

 

Figure 4(b)visually compares the timing numbers of our algorithm versus those of MLS. 

Generally speaking, our algorithm performed better than MLS. Our technique required much less 

time to produce solutions for all the problems than MLS did. Referring to Table 4, our algorithm 

required only 190 milliseconds to produce a solution for Benchmark i5 problem while MLS 

required 1000 milliseconds. Other numbers in the same table clearly show that our technique 

required less time in all the problems.  

 

The authors in [6] proposed an effective algorithm called Algorithm 2.4. They compared their 

algorithm against a large number of algorithms and showed its superiority to the others. The 

comparison is based on the following two problems [6]. 
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Problem (1) 
 

3) 2, 1, =(i

sin)xx-(x+xx+cosx+sinxx-cos-x=F

)xx-sin(x-)sin-(sinxx-)cos-(cosx=E

where,

0=])xx-cos)(xx-sin(x-)xx-sin)(xcosx+[(1

-1)]-cos(xE-)cosx+(1[F+)]x-sin(xF-)x-sin(x[E

02133102i32i2i

13i20i320i2i

2

13i23i213i2i2

2

i2ii2i

2

3i2i3i2i

ψψψψ

φφφφφ

ψφψφ

ψφφψ

 
 

Where the values of φi and φi are given in the following table [6]. 
 

 
 

Problem (2) 
 

The Combustion Application problem as defined in Table 2. They used the interval [0, 1] for all 

the variables instead of [-10, 10]. 

 
 Our algorithm Algorithm 2.4 [8] 

Test Case  EC Time (ms) Accuracy Time (ms) 

Problem (1) 4.3E−72 62 3.6E−90 125 

Problem (2) 1.6E−52 211 5.9E−89 484 
 

Table 5: The performance of our algorithm versus Algorithm 2.4 

 

As Table 5 shows, our algorithm outperformed Algorithm 2.4 in terms of CPU time. We used 

different measure to estimate the aggregate violation. Therefore, it is not possible to compare the 

precision. 
 

Authors in [21] presented conjugate direction flower pollination algorithm (CDFPA)and 

compared the performance of this algorithm with other algorithms such as flower pollination 

algorithm (FPA) and conjugate direction (CD) method. Based on the reported results in [21], the 

CDFPA performed better than the others. Table 6 shows the cases and the performance of our 

algorithm versus CDFPA. The entry "-" means no reported performance numbers and "" means 

close but not equal to. It is clear from the table that our algorithm performed better than CDFPA. 

Our algorithm found the exact solution in all cases while CDFPA found the exact solution for 

only one case and approximated solution for the rest. No timing figures reported for CDFPA to 

compare against. 
 

Cases 
Our algorithm CDFPA 

EC CPU time (ms) Precision CPU time 

Case1 
x1+ 0.99x2 = 1 

0.99x1 + 0.98x2 = 1 
0 1011 0 - 

Case 2 
H . x = b 

hij=1/(i+j-1) 
0 205 ≈ 0 - 
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∑
=

=
5

1

.
j

iji jhb , i=1..5 

Case 3 
200x1+ 101x2 = 100 

400x1 + 201x2 = −100 
0 672 ≈ 0 - 

Case 4 

x1
2
 -2x1 +3x2 = −1 

2x1
2
 – 3.9999x1 

+6.0001x2=  − 1.9999 

0 13615 ≈ 0 - 

 

Table 6: the performance of our algorithm versus CDFPA 

 

Finally we compare our algorithm with the one proposed in [20]. Table 7 shows the systems of 

equations and the performance of our algorithm compared to that of the algorithm in [20]. Clearly 

our approach produced better precision. No timing numbers are reported in [20] to compare 

against. 

 

Equations Interval 

Error in solution 

Our 

method 

Algorithm[20] 

“MinError” 
 

 
 

[-10, 10] 4.5E-9 5.09E−05 

 

 

 
 

[-5, 5] 0 0 

 

09369
12

)3)(2(

12

0165)2)(2(

3

3231

3

21

323121

=−
−−

−

=−−−−

xxxxxx

xxxxxx

 

06835
2

)()(2

312

3

2

31

2

32 =−
−+

−−

xxx

xxxxx
 

 

[-40,40] 5.8E-10 8.3E−04 

 

0)cos(

0)sin(

21

2

2

2

1

21
21

=+−

=+−−

xxxx

xxe
xx

 

 

[-10, 10] 3.1E-14 3.93E−07 

 

Table 7: The performance of our algorithm verses [20]. 

 

Note on the Constraint Violation Measure 

 

Our technique outperformed other techniques in terms of time, precision (measured in terms of 

the aggregate violation EC), or both. Furthermore, we measure the aggregate violation as the sum 
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of absolute values of the violations in each individual constraint while others measure the 

violation in terms of square root of the sum of the square of the individual violation. Our measure 

of violation is therefore more rigorous than theirs. That is because it can be easily shown that 

 

∑ ∑
= =

≥
n

i

n

i

iii

c
XfXi

1

2

1

))((|)(| ρ ∀Xi. 

 

According to this, our technique would have shown even significantly higher precision if we used 

the same constraint violation measure as the others 

 

5. CONCLUSION AND FUTURE WORK 
 

This paper proposed effective approach to find solutions for systems of linear and non-linear 

equations. Our approach transforms the problem of solving systems of equations into an 

optimization problem. Our transformation results in an aggregate violation function whose global 

minimum is the solution for the system of equations. The transformation defines also a criterion 

function that effectively determines when the aggregate function must be evaluated. 

 

The paper proposed random-guided algorithm to find the solution for the optimization problem 

and therefore to the corresponding system of equations. The algorithm uses one principal and two 

marginal directives that effectively search for the global minimum of the optimization problem. 

These three  directives are augmented with biased mapping rules that enable the algorithm to 

focus the search in the parts of the domain that most likely contain the global minimum without 

ignoring the other parts of the domains that may contain the minimum. 

 

We conducted many experiments to evaluate our approach. The experiments showed that our 

proposed technique is very effective in finding solutions with high precisionand high speed. We 

also compared our algorithm with state-of art algorithms. Our algorithm has better performance in 

terms of both the solution precision and the CPU time. 

 

We have two directions for future work. First, we would like to conduct more experiments to 

analyze the effect of tuning the parameters of the algorithm (α,β, d) on its performance. Second, 

we would like to check the advantage of parallelizing the algorithm so that we can run more than 

one version of the algorithm using different centers for the directives. 
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