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ABSTRACT 
 

This paper presents machine learning-based approaches to classification of historical traffic 

crashes in Kansas by severity, applied to a data set consisting of highway geometry, weather, 

and road sensor data. The goal of this work is to identify relevant features using a variety of 

loss measures and algorithms for feature selection. This is shown to facilitate the discovery of 

the most relevant sensors for the task of learning to predict severe crashes (those involving 

bodily injury). The key technical challenges are to cope with class imbalance (as a 75% 

majority of crashes are non-severe) and a highly correlated and redundant set of features from 

multiple coalesced sources. The major novel contributions of this work are the development of a 

random oversampling strategy for data augmentation, combined with the systematic application 

of multiple feature selection measures over a range of supervised inductive learning models and 

algorithms. Positive results from this approach, on a data set of 277 initial ground features and 

20,000 vehicle crashes collected over 9 years (2007 – 2015) by the Kansas Department of 

Transportation (KDOT), included models trained using 30 features (out of 277) that achieve 

cross-validation precision and recall comparable to those obtained using the full set of features. 

These and other results point towards potential use of feature selection findings and the 

resultant models in planning future road construction. 
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1. INTRODUCTION 
 
This work addresses the problem of applying machine learning to historical training data from 
roadside sensors, in conjunction with weather data and road geometry data, in order to predict the 
severity level of crashes based on new sensor and weather data. Roadside sensors are usually 
deployed along the highly concentrated highways to provide real-time information about the 
traffic including volume, speed of vehicles, and the vehicle count. Further details of the data set 
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are explained below. The research aim discussed in this paper is to build a predictive model from 
offline data to identify risky factors and to test the hypothesis that sensor data, along with weather 
and road data, are adequate to make accurate, precise, and sensitive (high-recall) predictions of 
discrete severity level. The success of the model provides a use case and applied rationale for 
deployment of such sensors in a wide area and technical objectives for development and 
refinement of sensors that can capture weather data to get a precise estimation of weather at the 
point of deployment. 
 
Need and Significance: Every year traffic accidents hurt the economy by claiming numerous 
human lives and causing damage to public property. According to USDOT (United States 
Department Of Transportation) [1], 37,133 people lost their lives in road crashes in 2017 alone. 
An early estimate of fatalities for the first half of 2018 shows that an estimated 17,120 people lost 
their lives. These statistics suggest a need for better road safety mechanisms. Despite the number 
and significance of advances that have been made in the field of road safety, more efforts are 
needed to identify factors that lead to a severe crash so that measures can be taken to mitigate the 
identified risks. 
 
One of the issues with such data is significant class imbalance between severe and non-severe 
classes [2]. If this data imbalance is not taken into account, then the classification model built 
may be biased and inaccurate. Standard classification algorithms have a bias towards the majority 
class. The features of the minority class are treated as noise and are often ignored in the model 
building process. This results in a model that achieves a significantly high accuracy by always 
predicting the majority class. To handle imbalance, we employ different sampling techniques: 
data-level techniques such as under sampling, oversampling, re-sampling with replacement 
(bootstrapping) and re-sampling without replacement. The KDOT data consists of crash severity 
coded as ”PO” (Property Damage), ”I” (Injury), and ”F” (Fatal). For the purpose of severity 
prediction, the ”I” and ”F” classes have been combined to form the Severe class (constituting 
24% of the examples) and ”PO” is considered to be the Non-Severe class (constituting 76%). 
These traffic sensors yield a tremendous amount of data and its full potential is yet to be tapped. 
 
The main contributions in this paper include: 
 

• The development of a coalesced, multisensor data set consisting of ground sensor, 
weather, and road geometry data used to train a supervised learning system for 
classification of crashes by predicted severity. 

• The application and evaluation of numerous feature selection methods to identify the 
most relevant features for crash prediction based on criteria such as validation set 
accuracy, prediction, and recall. 

• The application of data augmentation techniques to cope with the existing imbalance in 
the data set. 

• The application and evaluation of a range of discriminative classifiers (especially linear 
discriminants and decision tree-based models admitting rule-based explanation), along 
with ensemble methods. 

 
We are interested in supervised inductive learning to classify the severity of historical crashes 
based on sensor, weather, and road geometry data but without using features from police reports 
or other post hoc (non-predictive) features. In this paper, a data set and test bed are presented that 
supports this learning task, starting with a survey of relevant machine learning methods for 
anomaly prediction in imbalanced data sets in section 2, data collection and preparation in the 
traffic analytics domain in section 3, and specific methods used for this severity prediction task in 
section 4, and continuing in section 5 with experimental findings on this task, interpreting and 
discussing these findings in section 6, and presenting conclusions and future work in section 7. 
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2. LITERATURE REVIEW 
 
Extensive research has been done in crash severity prediction using several statistical, data 
mining, and machine learning approaches. These techniques have also been employed to identify 
crucial factors that lead to a severe crash. In [3], support vector machines (SVM) and ordered 
probit models were used for crash severity analysis; they showed that SVM produced better 
results than ordered probit models. In [4], SVMs were also used for severity prediction. The 
authors used classification and regression trees (CART) [5] to identify important features and 
then train a model using SVM with polynomial and Gaussian radial basis kernels. This study 
showed that polynomial kernel outperforms the Gaussian radial basis kernel. 
 
In [6], crash severity was analyzed using crash reports, real-time traffic, and weather data using 
random forests to rank the variables by importance. The authors used SVM and logit models for 
severity prediction. This study demonstrated that weather data and real-time traffic variables are 
significant factors in severity prediction. In [7], real-time traffic and weather data was also used 
to predict severity and occurrence of crashes. The authors of this work also used random forests 
to rank the features according to importance and then build models using Bayesian logistic 
regression and logit models. This study concluded that weather parameters did not have a direct 
influence on accident severity. 
 
In [8], several techniques for handling class imbalance such as undersampling, oversampling, and 
ensemble methods (majority voting and bagging) were used. The authors also experimented with 
several classification algorithms such as logistic regression, decision trees, neural networks, 
gradient boosting models, and Na¨ıve Bayes classifiers. For these experiments and this task, 
oversampling with random forests produces the best classification performance. In [9], a 
comparison was conducted between four statistical and machine learning methods such as 
multinomial logit (MNL), nearest neighbor classification (NNC), support vector machines (SVM) 
and random forest (RF). This study showed that nearest neighbor classification gives the best 
overall result. 
 
In [10], the simultaneous influence of human factors, road, vehicle, weather conditions and traffic 
features were explored in crash severity prediction. The authors used a series of artificial neural 
networks to model crash severity and to identify significant factors that lead to a severe crash. In 
[11], a CART model was used for injury severity and their results identified vehicle type as the 
most important feature associated with crash severity. 
 

3. DATA COLLECTION AND PROCESSING 
 
The data set used in this paper covers segments of the Kansas City highway network that are 
monitored by sensors, and traffic monitors which fall within the state of Kansas. This data set is a 
fusion of data from four different sources: 
 

• Crash Data 
• Road Geometry Data 
• Traffic Sensor Data 
• Weather Data 

 
3.1. CRASH DATA 
 
Crash data consists of all the crashes that occurred within 500 meters upstream/downstream of a 
traffic sensor. The data were collected over a period of nine years from the beginning of year 
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2007 up to the end of 2015. These data were derived from police reports that were completed by a 
highway patrol officers at the scene of a crash, and were obtained from the Kansas Crash and 
Analysis Reporting System (KCARS) database of the Kansas Department of Transportation 
(KDOT) [1]. There were a total of 19,881 crashes during the nine year period. The crash severity 
was coded as: ”PO” (Property Damage), ”F” (Fatal) and ”I” (Injury). Table 1 shows the 
distribution of crashes between the severe class, which is formed by merging fatal and injury 
classes, and the non-severe class which is a property damage class 
 
Since this study focuses on data obtained from road geometry, weather data, and traffic sensors, 
we only extract four attributes from the crash data obtained from police reports: time/date of 
accidents, days of accidents, locations of accidents (in terms of latitudes and longitudes), and 
severity of the crashes. Latitude and longitude coordinates are not used as part of analysis, but are 
required for the merger of this data with road geometry data. The combination of time/date and 
location were used to further merge the data with Traffic Sensors data. The time/date of accidents 
were used to merge the data with weather data. 
 

Severity Type #Crashes 

Severe (F and I) 4,771 (23.99%) 
Non-Severe (PO) 15,110 (76.00%) 

 
Table 1: Number of crashes based on severity 

 

3.2. ROAD GEOMETRY DATA 
 
The road geometry data were provided by Kansas Department Of Transportation (KDOT) for the 
nine-year period. This data includes fields: route direction, number of lanes, width of lanes, 
medians, median barrier type, shoulders and information on elevation, which was further used to 
calculate slope. Poly-line data were used to calculate curve radii (in degrees).  
 
3.3. TRAFFIC SENSOR DATA 
 
This data were obtained from the Kansas City (KC) Scout Project. The KC Scout Project is 
responsible for monitoring more than 300 miles of highway in the region by means of sensors, 
which are mounted along the roadways, and video cameras. The sensors are used to record the 
speed of traffic, count of vehicles, and volume of traffic. The time/date stamps and location from 
the crash data were used to obtain the traffic sensor data for the quarter hour before and after any 
crash. These data were obtained based on the proximity of sensors to the accident site.  
 
3.4. WEATHER DATA 
 
The weather data were extracted from the National Oceanic and Atmospheric Administration 
(NOAA) National Centers for Environmental Information Surface Data. These records are 
collected every hour at the downtown Kansas City airport, which is located 15 miles north to the 
center of the area used in this study. The weather data are not considered very precise due to the 
distance from the accident area to the airport location. However, they give fairly correct estimates 
of weather condition at the time of the crash. 
 
3.5. DATA CLEANING 
 
Records with more than 20 missing values were manually removed from the data set. The number 
of crashes reduced to 19,881 from 20,822. A distribution of crashes based on severity is shown in 



Computer Science & Information Technology (CS & IT)                                 129 

Table 1. The categorical data were coded with numerical values. Location features (those based 
only on a GPS coordinate such as latitude and longitude) were removed from the data set because 
these are not generalizable based on the spatial data model of this data set. (For example, the 
sensors are not themselves geo referenced, nor are they placed according to any uniform or 
regular scheme.) Features from crash data were removed as well (except for the 3 features 
mentioned in section 3.1) This reduced the number of features from 277 to 133 features. The final 
numbers of crashes and features are shown in Table 2. 
 

4. METHODOLOGY 
 
In this paper, six classification models were used for training the data. This section begins by 
providing details of the feature selection methods used in this paper. These details are followed 
 

Data Number 

Features 133 
Instances 19,881 

 

Table 2: Number of Features and Instances 
 

by a discussion of data augmentation methods used for handling the problem of class imbalance. 
Afterwards, a summary of the classification models that were used for training is given, followed 
by a discussion of evaluation metrics used in the paper. Finally, this section provides a few details 
about the tools used for this paper along with the experimental setup. 
 

4.1   FEATURE SELECTION 
 
Feature selection is the process of finding the most important features/input variables. It usually 
results in a reduction of number of the input variables or features that will be used for building a 
machine learning model [12]. Feature selection has two major benefits: 
 

• It eliminates irrelevant or redundant data that would otherwise makes it more difficult to 
discover meaningful patterns in the data. Hence, identifying those features that will build 
a better quality model. 

• If the data is high dimensional then most machine learning algorithms require a larger 
data set for training. It also requires more computational resources. 

 
Feature selection methods are broadly classified into two categories: filter and wrapper methods 
[13]. Filter methods [14] are independent of any prediction algorithm and rely on the general 
characteristics of the data. Wrapper methods, on the other hand, rely on classification algorithm 
to evaluate subsets of features [15]. 
 
4.1.1. INFORMATION GAIN ATTRIBUTE RANKING 
 
This method evaluates the quality of an attribute by calculating the information gain (i.e., the 
change in entropy due to conditioning) for each attribute with respect to the output variable 
(class) [16] [17] [18] as shown in equation 1. 
 

                                   (1) 
where, H is the information entropy, C is the class, and A is the attribute. 
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4.1.2. GAIN RATIO ATTRIBUTE EVALUATION 
 
This method evaluates the quality of an attribute by measuring the gain ratio (GR) with respect to 
the class [18]. Equation 2 shows the formula for gain ratio attribute evaluation. 
 

                      (2) 
 

where, C is the class, H is the information entropy, and A is the attribute. 
 
4.1.3. CORRELATION-BASED ATTRIBUTE EVALUATION (PEARSON’S COEFFICIENT) 
 
This method measures the correlation between each independent and dependent variable. A 
negative value indicates negative correlation between two variables, whereas a positive value 
signifies a positive correlation, and a value of 0 indicates the absence of a relationship between 
variables. The Pearson correlation [19] is measured in equation 3. 
 

                                                          (3) 
 

where, cov designates the co-variance,X the input feature, Y the output feature, x is the standard 
deviation of X, and y is the standard deviation of Y . 
 
4.1.4. CHI-SQUARED ATTRIBUTE EVALUATION 
 
Compute the chi-squared statistic of each attribute with respect to the class [18]. Chi-square [20] 
is measured using equation 4 where a high value signifies that two features are dependent. 
 

                                        (4) 
 

where: K is the number of classes, Ok = observed value, n = total number of classes in data-set, 
and Ek = expected value 
 
4.1.5. CORRELATION-BASED FEATURE SUBSET EVALUATION 
 
This objective of this method is to evaluate the feature-class and feature-feature correlation [21]. 
Subsets with the highest merit found during the search are selected using equation 5. 
 

                                  (5) 
 

where, Ms is heuristic of a feature subset s, K is the number of features, rcf is the mean feature 
class correlation, and rff is the average feature-feature inter-correlation. 
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4.1.6. WRAPPER SUBSET EVALUATION 
 
The main idea of wrapper subset evaluation [15] is to find a good subset using the validation-set 
accuracy of a supervised inductive learning algorithm (inducer) as part of the evaluation function. 
This method results in better features as compared to filter methods because it is tied to a specific 
inducer. 
 
4.2. DATA AUGMENTATION 
 
4.2.1. DATA-LEVEL RESAMPLING 
 
Data-level approaches work by re-balancing the class distribution [22]. These include 
oversampling and undersampling techniques. Oversampling techniques create more of the 
minority class whereas undersampling techniques remove some of the majority class. We 
experimented with the following oversampling techniques: random oversampling, SMOTE [23], 
borderline SMOTE [24], SVM SMOTE [25] and Adaptive Synthetic (ADASYN) [26]. Under 
sampling techniques  used in our preliminary experiments include: random under sampling [27], 
Tomek’s links [28], edited nearest neighbors [29], condensed nearest neighbor [30], one-sided 
selection [31], and neighborhood cleaning rules [32]. 
 
4.2.2. ALGORITHMIC RESAMPLING 
 
Algorithmic methods include bootstrap sampling with or without replacement, which produces a 
single random subsample of the data [33] on which a supervised learning classifier is then trained. 
This is distinguished from data-level resampling in that the bootstrap sample distribution 
uniformly draws from the original instances, maintaining the relative frequency of labels. 
 
4.2.3. ENSEMBLE METHODS 
 
Ensemble methods train several classifiers on training data and their evaluations are aggregated to 
produce the final classification decision [34]. 
 
4.3. CLASSIFICATION MODELS 
 
This paper uses the following classification algorithms to build models: 
 

• Logistic Regression (LR) [35] 
• Naïve Bayes (NB) [36] 
• Support Vector Machines (SVM) [37] 
• Decision Trees: CART [5] 
• Random Forest (RF) [38] 
• Extremely Randomized Trees (ERT) [39] 

 
4.4. EXPERIMENTAL SETUP AND EVALUATION METRICS 
 
Weka [40] is used for feature selection, 10-fold cross validation was applied for validating 
theclassification models [41]. In 10-fold cross validation, data is partitioned into 10 randomly 
selected folds (subsets) of roughly equal size: nine folds are used for training, and the remaining 
one fold is used for validation. This process is repeated 10 times such that each subset is used 
exactly once for validation. 
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Feature selection methods are run to produce the best 10, 15, 20, 25, and 30 features for each of 
the methods. These feature sets are then used for classification using the algorithms mentioned in 
section 4.3. Based on the results we selected 30 features for each feature set. We tested our 
selected features with different sampling techniques mentioned in section 4.2. We run over 5000 
experiments using these feature sets with sampling techniques. These experiments were done 
using the feature sets and exposing them to sampling techniques by running classification 
algorithms to produce the results. The classification models were built using python library 
sklearn. Support vector machines was tested using linear, polynomial, sigmoid and rbf kernels. In 
our experiments, SVM performed best with rbf (radial basis function) kernel.  
 
The performance of the classifiers is evaluated using a confusion matrix.This enables us to 
calculate accuracy, precision sensitivity (recall) and f-score [42] Since we are using 10 fold 
crossvalidation, we will present the scores as the mean of all the 10 folds. So we will express our 
results in terms of weighted accuracy, weighted precision, weighted recall and weighted f-score. 
 
4.5. BASELINES 
 
We employ two classification models as our baselines: 
 

• Original Data (O.D): The original data with 133 features with logistic regression as the 
inductive learning classifier gives us the highest weighted accuracy. This is the scenario 
where the model classifies everything as the majority class. 

• Original Data (O.D) + Data Augmentation: The original data with 133 features is 
augmented using different sampling techniques and it performs best with random 
oversampling and SVM to give a weighted accuracy of 96.62%. 

 

5. EXPERIMENTAL RESULTS 
 
Table 3 shows the results of six classifiers used with four feature sets consisting of 30 features 
each. Info gain, gain ratio, and chi squared feature selection methods produced the same 
attributes; hence, the same results for accuracy, precision, recall and F-score. So henceforth, we 
show only Info gain in the results. Wrapper subset evaluation was used with random forest for 
feature selection and achieves the best weighted accuracy of 75.85% when compared to to other 
feature sets with random forest classifier. We can observe from Table 3 that feature selection 
alone does significantly improve the weighted precision over the baseline for logistic regression 
model. 
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Table 3: Results(%) of supervised inductive learning classifiers with feature selection methods 
 (including original baseline) 

 
Next we expose these data sets to different data augmentation methods mentioned in section 4.2. 
Random oversampling produced the best results, followed by re-sampling with replacement 
(bootstrap aggregation). Random undersampling produced the best results as compared to other 
undersampling methods. Table 4 shows the results of classification with support vector machines 
for all the feature sets. We present only the results for support vector machines because it 
produced the best results as compared to other methods: logistic regression, na¨ıve bayes, 
decision tree (CART), extremely randomized tree and random forest. 
 
The results demonstrate that info gain feature set gives slightly better results than the other 
feature selection methods in terms of precision, recall and f-score. Our baseline when treated with 
data augmentation methods produces a weighted accuracy of 96.62% for random over sampling. 
The results obtained using a subset of 30 out of 133 features are comparable to those obtained 
using baseline of all 133 features. 
 
Thus, feature selection methods other than the wrapper method produce comparable results to our 
second baseline (i.e. original data + data augmentation), and help in identifying the 30 most 
important features that produce these results. Table 5 shows these 30 features and they are ranked 
using random forest with the most important feature at the top and least important being at the 
bottom. 
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Table 4: Results(%) of SVM with Feature Selection and Data Augmentation Methods 

 

 
Table 5: Features selected using information gain are ranked by random forest classifier 

 
We use the features selected by information gain (info gain), which are presented in Table 5 for 
building classification models. 
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Table 6 shows the class-wise results of applying random oversampling to info gain feature set and 
building our six classification models. We clearly see a 25.52% increase in performance over our 
O.D. baseline and a comparable performance to our O.D. + random oversampling baseline. 
 

 
 

Table 6: Results(%) of binary classification with random over sampling for info gain feature set vs the two 
baselines 

 

6. DISCUSSION 
 

Information gain-based feature selection selected the features given in Table 5 that have been 
ranked using a random forest classifier. Out of the 30 features, 11 come from roadside sensor 
data, 15 from weather data and 3 from road geometry data. Results in Table 4 and Table 6 show 
that features selected using information gain when subjected to random over sampling produce 
the best results with SVM, followed by random forests. The augmented data also produced better 
results than our baseline of original data when used with tree-based methods (CART and 
extremely randomized trees). We get an increase of 25.5% in accuracy, 49.4% in precision, and 
25.5% in recall when our method (info gain feature set with random-oversampling using SVM) is 
compared to original data baseline. We conducted a paired T-test between our method and our 
second baseline with SVM classifier for 10-fold cross validation, resulting in a p-value of 
0.000000022 (2.2×10-8) at the 95% level of confidence. 
 

7. CONCLUSIONS AND FUTURE WORK 
 
We have presented machine learning-based approaches to classify historical traffic crashes in 
Kansas by severity. This work resulted in identifying relevant features using feature selection 
algorithms. The key technical challenges faced were simultaneous class imbalance and a high 
number of correlated, weakly-relevant features. Our experimental findings demonstrate 
empirically, with high statistical significance, that precision and recall of severity prediction are 
improved by algorithmic feature selection and random oversampling, and that thereby only a 
subset of 30 features (out of over 133) is needed.  
 
By systematically comparing six feature selection methods across six supervised inductive 
models (all discriminative except Naïve Bayes), and applying multiple oversampling techniques 
to the best-performing of these combinations (those with highest precision and recall), we 
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conclude that feature selection using information gain with random oversampling produces a 
cross-validation precision and recall higher than those obtained using the full set of features 
without any data augmentation. We also achieved results of comparable quality to the full 133-
feature set using feature selection with our sampling-based data augmentation approach, which 
reduced the feature subset size to 30. These results point towards potential use of feature selection 
findings and the resultant models in planning future road construction. 
 
In current and future work, we are planning to explore more ensemble methods and cost-sensitive 
methods for the traffic crash severity prediction task. Some of these methods may also facilitate 
transfer learning to address related tasks such as traffic crash prediction (by risk, location, and 
road condition) and related domains such as crash severity in other geographic areas, with 
different sensors or weather data (and forecasting models), and with different roads and 
commensurate traffic density (e.g., rural areas). 
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