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ABSTRACT 

 

Artificial Neural Networks (ANNs) have been successfully used in Pattern Recognition tasks. 

Evolutionary Spiking Neural Networks (ESNNs) constitute an approach to design third-

generation ANNs (also known as Spiking Neural Networks, SNNs) involving Evolutionary 

Algorithms (EAs) to govern some intrinsic aspects of the networks, such as topology, 

connections and/or parameters. Concerning the practicality of the networks, a rather simple 

standard is commonly used; restricted feed-forward fully-connected network topologies 

deprived from more complex connections are usually considered. Notwithstanding, a wider 

prospect of configurations in contrast to standard network topologies is available for research. 

In this paper, ESNNs are evolved to solve pattern classification tasks, using an EA-based 

algorithm known as Grammatical Evolution (GE). Experiments demonstrate competitive results 

and a distinctive variety of network designs when compared to a more traditional approach to 

design ESNNs. 
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1. INTRODUCTION 
 
The Artificial Neural Networks (ANNs) are computational entities constituted by mathematical 
models that drew inspiration from the neurological processes occurring in the biological brain; 
insight in the field of Neuroscience has been harnessed to be recreated in the Computational 
Intelligence field, resulting in a powerful approach to solve a great variety of computational 
problems [1, 2, 3]. Usually depicted as a set of interconnected units arranged into layers, ANNs 
exchange some kind of data [4] and are subject to a training procedure for them to learn from the 
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incoming information [5]. Ever since the proposal of the first models of ANNs [6, 7], researchers 
have found improvements on their computational power, connections [8], learning capabilities [4, 
5] and even resemblance to natural networks [9], leading to a profound interest in examining and 
expanding their scope.   
 
Attempts in this matter have caused the conception of Spiking Neural Networks (SNNs) [10], 
advanced models of so-called third-generation ANNs catalogued for the inclusion of the time 
factor in their computation. This enhancement sets the SNNs one step ahead (with respect to older 
ANNs models) regarding their likeness to biological neurons, since it allows them to deal with 
spatio-temporal information. Their capabilities have been properly displayed in the literature [10, 
11, 12]. 
 
But in spite of the advantages on their performance, ANNs are not without a fundamental issue 
related to their conformation: their design [13, 4, 10]. The ANNs problem-solving capabilities are 
strongly correlated to their internal construction (i.e., their topology, connectivity, 
parameterization, etc.), and so the importance of a good design process is evident. Traditionally, 
the ANNs are empirically devised in accordance to the problem at hand, with aid of the designer 
experience and trial-and-error techniques, a time-consuming and ever-perfectible task. However, 
some evolution-oriented approaches have been introduced to address the problem; by using 
Evolutionary Algorithms, the designer is able to establish well-known mechanisms to 
automatically optimize whichever facet of the network design specification. Praxis in this manner 
has led to the formulation of Evolutionary Artificial Neural Networks (EANNs) that require less a 

priori comprehension of the networks from the designer, to produce evolved ANNs useful for 
solving problems while helping to alleviate the design issues [14, 15].  
 
This work proposes a framework to automatically evolve the design of Spiking Neural Networks 
by means of an Evolutionary Algorithm known as Grammatical Evolution, allowing for a higher 
degree of freedom in determining their design criteria; generated Evolutionary Spiking Neural 
Networks (ESNNs) possess unrestricted partially-connected network topologies containing 
various types of arbitrary connections in order to provide solutions to Pattern Recognition 
problems. Section 2 locates some important background concepts related to the present paper. 
Section 3 pinpoints the methodology employed to fulfill the purpose of this work, Section 4 
shows the experimental results obtained by applying the methodology and Section 5 gives some 
insight on the discussion and conclusions achieved. 
 
1.1. Related Work 
 
Evolutionary Algorithms such as Genetic Programing and Evolutionary Strategies are employed 
to define design traits in Artificial Neural Networks such as training [16, 17] and topology [18]. 
Furthermore, utilizing Grammatical Evolution as a mean to define multiple design criteria such as 
topologies and neural model parameters of second-generation ANNs is considered in [19], and for 
third-generation ANNs in [20]. In [21] third-generation partially-connected topologies are 
generated with GE. Although some of these methods may consider any conceivable amount of 
designing criteria, the traditional approach seem to remain abided; restricted (i.e., connections 
between hidden units are not allowed) feed-forward network topologies figure as the standard for 
EANNs generation in the related work. As the evolutionary process aims to drive the design 
towards the best solution possible, a wider allowance in options may benefit the design process, 
preserving or improving the performance of the networks while considering unexplored forms of 
solutions. 
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2. BACKGROUND  
 
2.1. Artificial Neural Networks 
 
The Artificial Neural Networks (ANNs) encompass a range of computational models 
distinguished by their connectivity traits; usually depicted as an interconnected group of 
computing units (or neurons), the ANNs convey information to other units through their links (or 
synapses) mimicking the manner a biological brain does, with the objective to fulfill a learning 
process to ultimately solve a specific problem.  
 
Fundamentally, ANNs are conceived as a composition of linked neurons disposed in groups (or 
layers) of at least three types: input layer, hidden layer(s), output layer. External stimuli is 
provided to the network through the input layer, forwarded throughout the hidden layers, and 
egressed in the output layer. The connectivity links are modulated (or weighed) in order to 
enhance or inhibit the sharing information between the units; a learning process is intended to 
find the most proper regulation of the synapses to comply with a desired output to solve a 
problem. 
 
Model-wise, ANNs are categorized in three groups (or generations), in relation to the type of data 
they are able to compute. First-generation ANNs support digital data by using threshold units [6, 
7], second-generation ANNs comprise both digital and analogic data as they incorporate 
continuous activation functions, and third-generation ANNs in addition to digital and analogical 
data are able to handle spatio-temporal data since their computing units –spiking neurons– encode 
information into short electrical pulses spread along a time lapse. 
 
2.2. Spiking Neural Networks 
 
The development of the third generation of ANNs has involved an endeavour to comprehend the 
information-processing capabilities of the brain in order to mimic their behaviour. By introducing 
a previously obviated element, –the pulsating response of a neuron over time [22] –, the Spiking 
Neural Networks are inherently provided with fundamental neurological elements, viz., neuronal 
coding, signal transmission, refractoriness or synaptic plasticity. As modelling approaches appear 
to describe such traits [9], their computing capabilities are assessed altogether. 
 
2.2.1. Spike Response Model 
 
Particularly, the Spike Response Model (SRM) is of specific interest in this work, as it serves as 
basis for the produced SNNs. In SRM, the state of a neuron j (i.e., its internal electric potential) 
over time t is determined by Eq. (1). When the value of xj(t) reaches the threshold Ɵ from below, 
the neuron fires a spike (see Fig. 1). 
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Figure 1.  Linear summation of presynaptic spikes of neuron 
 
In Eq. (1), wji acts as a modulation parameter of the specific synapse. The set of spikes from the 
connecting presynapses of j (Γ
 

where τ is a time constant that defines the decay of the postsynaptic potential. 
firing time and synaptic delay parameter of the neuron 
 
2.3. Evolutionary Spiking Neural Networks
 
In accordance to the generalization Evolutionary Artificial Neural Networks (EANNs) [23], 
Evolutionary Spiking Neural Networks (ESNNs) can be specified as a paradigm that involves the 
utilization of Evolutionary Algorithms to determine the design of Spiking Neural Network
approach incorporates the advantages of a metaheuristic process for optimization purposes, and 
the computing capabilities of third
 
In this approach, a population
aspects in the network design to be optimized; the Evolutionary Algorithms capabilities are 
employed to evolve design criteria such as parameters [24], topology [25], learning rule [26] or a 
combination of those [27]. 
 

3. METHODOLOGY 
 
The methodology employed in this paper is portrayed in Fig. 2. In it, an encoded rendering of the 
dataset information is provided to the Grammatical Evolution 
Algorithm–, to ultimately provide Evolutionary Spiking Neural Networks to solve
Classification problem. The Grammatical Evolution per se is operated internally by the definition 
of a problem-related Grammar, a Target Specification, a Mapping Process, and a Metaheuristic 
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Figure 1.  Linear summation of presynaptic spikes of neuron j. Adapted from [9] 

acts as a modulation parameter of the specific synapse. The set of spikes from the 
(Γj) contribute to the linear summation yi(t) described by Eq. (2).

 is a time constant that defines the decay of the postsynaptic potential. 
firing time and synaptic delay parameter of the neuron i, respectively. 

Evolutionary Spiking Neural Networks 

the generalization Evolutionary Artificial Neural Networks (EANNs) [23], 
Evolutionary Spiking Neural Networks (ESNNs) can be specified as a paradigm that involves the 
utilization of Evolutionary Algorithms to determine the design of Spiking Neural Network
approach incorporates the advantages of a metaheuristic process for optimization purposes, and 
the computing capabilities of third-generation artificial neural models. 
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aspects in the network design to be optimized; the Evolutionary Algorithms capabilities are 
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aspects in the network design to be optimized; the Evolutionary Algorithms capabilities are 
employed to evolve design criteria such as parameters [24], topology [25], learning rule [26] or a 

dology employed in this paper is portrayed in Fig. 2. In it, an encoded rendering of the 
the selected Evolutionary 

, to ultimately provide Evolutionary Spiking Neural Networks to solve the Pattern 
Classification problem. The Grammatical Evolution per se is operated internally by the definition 

related Grammar, a Target Specification, a Mapping Process, and a Metaheuristic 
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Optimization Engine guided by an Objective Function;
section. 

Figure 2.  Flowchart of the methodology employed in this work

3.1. Spatio-temporal Encoder
 
The Spatio-temporal Encoder acts as a function to transform the information in the datasets into a 
comprehensible form to feed the spiking networks. Since the input data often stands for static 
information (whether digital or analogical), and third
spatio-temporal data, a conversion process is necessary to accommodate the need
dimension encoder employed in this work is portrayed in Eq. (3) [28].

where x is the original input data, 
y(x) is the spatio-temporal transformation over a period of time [
xM and xm. The observed encoding scheme was adjusted to retain a temporal range from 0.01 to 9 
milliseconds (ms.). 
 
3.2. Grammatical Evolution
 
The Grammatical Evolution (GE) [29] is the Evolutionary Algorithm used to guide the 
optimization process for the generated ESNNs in this work. The nature of GE involves several 
elements, described as follows.
 
3.2.1. Grammar 
 
The Backus-Naur Form Grammar 1 is proposed to govern the generation of random network 
topologies, and to determine the 
zero or more hidden layers (delimited by the closing curled bracket symbol 
or more neuron units (separated by the closing squared bracket symbol 
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Optimization Engine guided by an Objective Function; these elements are revisited in this 

 
 

Figure 2.  Flowchart of the methodology employed in this work 
 

temporal Encoder 

temporal Encoder acts as a function to transform the information in the datasets into a 
form to feed the spiking networks. Since the input data often stands for static 

information (whether digital or analogical), and third-generations ANNs are designed to process 
temporal data, a conversion process is necessary to accommodate the need

dimension encoder employed in this work is portrayed in Eq. (3) [28]. 

is the original input data, xM and xm are the maximum and minimum vales that 
temporal transformation over a period of time [tl, tu], and r is the range between 

. The observed encoding scheme was adjusted to retain a temporal range from 0.01 to 9 

Grammatical Evolution 

The Grammatical Evolution (GE) [29] is the Evolutionary Algorithm used to guide the 
ization process for the generated ESNNs in this work. The nature of GE involves several 

elements, described as follows. 

Grammar 1 is proposed to govern the generation of random network 
topologies, and to determine the model parameters (weighs and delays). It allows the inclusion of 
zero or more hidden layers (delimited by the closing curled bracket symbol }), composed by one 
or more neuron units (separated by the closing squared bracket symbol ]), that may contain one or 
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temporal Encoder acts as a function to transform the information in the datasets into a 
form to feed the spiking networks. Since the input data often stands for static 

generations ANNs are designed to process 
temporal data, a conversion process is necessary to accommodate the needs. The one-

 
are the maximum and minimum vales that x takes, 

is the range between 
. The observed encoding scheme was adjusted to retain a temporal range from 0.01 to 9 

The Grammatical Evolution (GE) [29] is the Evolutionary Algorithm used to guide the 
ization process for the generated ESNNs in this work. The nature of GE involves several 

Grammar 1 is proposed to govern the generation of random network 
model parameters (weighs and delays). It allows the inclusion of 

), composed by one 
), that may contain one or 
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more synaptic connections (marked by the closing parenthesis symbol )). The output layer is 
composed by one computing unit with one or more synapses. Synaptic connections may be 
established with regard to a specific neuron index from a sequential list of integer numbers 
(<neuronIndex>), meaning that any given neuron is able to set up synapses with any neuron in 
the network, resulting in types of connections such as loops, between units in the same layer or in 
different layers. In this framework, the amount of elements in such list is determined as two times 
the number of input features minus one. 
 

 
 

Grammar 1. Proposed BNF Grammar for designing ESNNs 
 

3.2.2. Target Specification 
 
The Target Specification alludes the manner in which the networks are conditioned to learn from 
the input data to denote a proper prediction of the classes in the dataset. Apropos of this work, the 
time of the first spike in the simulation of the lone output unit of the networks acts as the 
specification of the target, allocating each class a well-defined time; samples processed are 
expected to trigger a first-spike in the simulation of the output unit equal or near the time 
specified for its respective class. 
 
3.2.3. Mapping Process 
 
The mapping process employed in this framework is supported by a depth-first search algorithm 
to transform the genetic definition of the individuals in a population into words encoding the 
actual network (topology and parameters). 
 
3.2.4. Metaheuristic Optimization Engine 
 
The Grammatical Evolution is aided by a metaheuristic process to carry out the evolution of a 
population of individuals. Such process was designated to be the Differential Evolution (DE) [30] 
for the purposes of this work, as in concordance with [20]. The DE observes the following 
parameters: Real Search Space [0, 255], Individual Dimension = 500, Function calls = 1,000,000, 
Population size = 100, Crossover Rate = 10%, Mutation - DE/Rand/1. 
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3.2.5. Objective Function 
 
The objective function is used to provide an indicative of how well-fitted a specific solution is to 
solve the problem. This measure is employed by the Metaheuristic Optimization Engine to guide 
the evolution towards the optimal. The Eq. (4) defines the accuracy error in the ratio of the proper 
classifications (C) and the total amount of predictions (T) made by a network on the design set, 
and so is applied in this framework. Lower error values indicate a better performance of the 
networks, so the function is designed for minimization. 
 

 
 

4. EXPERIMENTAL RESULTS 
 
The proposed method was implemented to comply with the experimental scheme detailed in this 
section. Twelve pattern recognition benchmark datasets from the UCI Machine Learning 
Repository [31] were considered: Balance Scale, Blood Transfusion Service Center (Blood), 
Breast Cancer Wisconsin (Breast Cancer), Japanese Credit Screening (Card), Pima Indians 
diabetes (Diabetes), Fertility, Glass Identification (Glass), Ionosphere, Iris Plant, Liver Disorders 
(Liver), Parkinson and Wine. Table 1 shows details of the datasets employed. 
 
Every dataset was randomly divided in two, and the halves balanced by including in each the 
same amount of instances of every class. One half was labelled as the Design set, and it was 
employed to run the Grammatical Evolution process in order to obtain the best possible network. 
The remaining half was labelled the Test set, and it was supplied to the best network obtained by 
the Design set to assess its accuracy on a previously unseen set.  
 
For comparison purposes, two configurations were considered, performing forty independent 
experiments for each, as defined next: 
 

• Configuration X. Conceived to replicate the configuration with the best results obtained 
in [20] (neural model parameterization was thoroughly reproduced).  Restricted single-
hidden-layer feed-forward topologies are achieved in all cases. 
 

• Configuration Y. It emulates configuration X but employing the proposed Grammar 1 to 
broaden the amount of connection types available for selection in the evolutionary 
process. The following types are added: looped (within the same unit), unrestricted 
(between units in the same layer), supralayer (between units in non-adjacent layers). 

 
Table 1.  Details of the datasets employed for experimentation. 

 
Dataset Instances Classes Features 
Balance Scale 625 3 4 
Blood 748 2 4 
Breast Cancer 683 2 19 
Card 653 2 15 
Diabetes 768 2 8 
Fertility 100 2 9 
Glass 214 6 9 
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Ionosphere 351 2 33 
Iris Plant 150 3 4 
Liver 345 2 6 
Parkinson 195 2 22 
Wine 178 3 13 

 
Results obtained are summarized in Table 2 denoting average accuracies of classification on both 
labeled datasets. Highest values are emphasized in boldface. Furthermore, Figures (3, 4, 5, 6) 
show example networks (and their corresponding word) generated by the framework; solid lines 
represent traditional feed-forward connections, dashed lines portrait supralayer connections, and 
densely dotted lines mark unrestricted connections. E.g., Figure 3 corresponding word is 
portrayed in three lines to denote the synapses of the generated units, as described in section 
3.2.1. The first line describes the connection of the hidden unit with the unit 10, a synapse weight 
of 915.59 and a delay of 11.61. The second line only denotes the separation of hidden layers, as 
there are not any more hidden units in this example. The third and last line shows the incoming 
synapses of the output unit (from units 1, 8, 4 and 3), and their respective weights and delay 
values. This very analysis of the corresponding words relating to the network topology can be 
made to Figures 4, 5 and 6 as well. 
 
Table 2.  Accuracy averages (and standard deviation) of Design and Test classification for both considered 

configurations on every experimentation dataset. 
 

Dataset Configuration Design Accuracy Test Accuracy 
Balance Scale X 0.8957 ± 0.0068 0.8662 ± 0.0132 

Y 0.8875 ± 0.0088 0.8595 ± 0.0169 
Blood X 0.7996 ± 0.0161 0.7710 ± 0.0155 

Y 0.8021 ± 0.0108 0.7710 ± 0.0120 
Breast Cancer X 0.9751 ± 0.0059 0.9466 ± 0.0117 

Y 0.9642 ± 0.0068 0.9457 ± 0.0115 
Card X 0.8804 ± 0.0133 0.8585 ± 0.0155 

Y 0.8782 ± 0.0121 0.8547 ± 0.0159 
Diabetes X 0.7937 ± 0.0115 0.7361 ± 0.0187 

Y 0.7932 ± 0.0145 0.7370 ± 0.0168 
Fertility X 0.9395 ± 0.0192 0.8495 ± 0.0326 

Y 0.9340 ± 0.0220 0.8350 ± 0.0376 
Glass X 0.7121 ± 0.0193 0.6177 ± 0.0408 

Y 0.6943 ± 0.0238 0.5968 ± 0.0386 
Ionosphere X 0.9616 ± 0.0108 0.9001 ± 0.0215 

Y 0.9526 ± 0.0114 0.8993 ± 0.0264 
Iris Plant X 0.9920 ± 0.0078 0.9373 ± 0.0259 

Y 0.9887 ± 0.0101 0.9380 ± 0.0274 
Liver X 0.7677 ± 0.0227 0.6604 ± 0.0326 

Y 0.7635 ± 0.0211 0.6656 ± 0.0304 
Parkinson X 0.9242 ± 0.0161 0.8477 ± 0.0362 

Y 0.9142 ± 0.0172 0.8321 ± 0.0327 
Wine X 0.9665 ± 0.0170 0.8692 ± 0.0441 

Y 0.9327 ± 0.0194 0.8483 ± 0.0597 
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Figure 3.  Example network and corresponding word. Dataset: 
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Figure 3.  Example network and corresponding word. Dataset: Fertility. Configuration: 

design 0.94. Accuracy of test: 0.9 
 
 
 
 
 
 
 

                               49 

 

. Configuration: Y. Accuracy of 
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Figure 4.  Example network and corresponding word. Dataset: 
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Figure 4.  Example network and corresponding word. Dataset: Iris Plant. Configuration: 
design 0.9867. Accuracy of test: 0.9867 

 

 

. Configuration: Y. Accuracy of 
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Figure 5.  Example network and corresponding word. Dataset: 

Figure 6.  Example network and corresponding word. Dataset:

4.1. Statistical Analysis 
 
A Wilcox on signed-rank test was applied to the Test Accuracy of the obtained data in order to 
determine whether or not the results belonged t
efficacy of one configuration over the other. The null hypothesis of the Wilcox
test states that compared populations have the same distribution with the same median. Table 3 
shows the results obtained by the Wilcox
 

Table 3.  Results obtained by the Wilcoxon test for configurations X and Y.

VS R+

X vs Y 63.0
Y vs X 15.0

 
Based on a significance level of 0.05, as the Exact P
null hypothesis cannot be rejected, and a proper distinction of the performances of the 
configurations is not statistically clear. Ergo, a significate consideration on 
best cannot be made, appraising both configurations as equal in terms of performance.
 

5. DISCUSSION AND C
 
In this paper, a framework to design Evolutionary Spiking Neural Network (ESNNs) was 
presented. Such framework is b
Evolution, and is capable of producing SNNs with a wider range of connections types. A 
comparison against a similar framework generating more traditional networks was made to assess 
the behaviour of the generated networks. In general, the proposed method was found to match the 
pattern recognition capabilities of its contender, since accuracy results hardly differ and a 
statistically trustworthy argument to differentiate the methods was not found.
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Figure 5.  Example network and corresponding word. Dataset: Glass. Configuration: Y.

0.6667. Accuracy of test: 0.6606 
 

 
Figure 6.  Example network and corresponding word. Dataset: Balance Scale. Configuration: 

of design 0.8878. Accuracy of test: 0.8882 
 

rank test was applied to the Test Accuracy of the obtained data in order to 
determine whether or not the results belonged to the same distribution, i.e. to distinguish on the 
efficacy of one configuration over the other. The null hypothesis of the Wilcox
test states that compared populations have the same distribution with the same median. Table 3 

lts obtained by the Wilcox on test for configurations X and Y. 

Table 3.  Results obtained by the Wilcoxon test for configurations X and Y.
 

+ R- Exact P-value Asymptotic P-value
63.0 15.0 >= 0.2 0.054614 
15.0 63.0 >= 0.2 1 

significance level of 0.05, as the Exact P-values obtained by the test are higher, the 
null hypothesis cannot be rejected, and a proper distinction of the performances of the 
configurations is not statistically clear. Ergo, a significate consideration on which configuration is 
best cannot be made, appraising both configurations as equal in terms of performance.

CONCLUSIONS 

In this paper, a framework to design Evolutionary Spiking Neural Network (ESNNs) was 
presented. Such framework is based on an Evolutionary Algorithm known as Grammatical 
Evolution, and is capable of producing SNNs with a wider range of connections types. A 
comparison against a similar framework generating more traditional networks was made to assess 

e generated networks. In general, the proposed method was found to match the 
pattern recognition capabilities of its contender, since accuracy results hardly differ and a 
statistically trustworthy argument to differentiate the methods was not found. 
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Table 3.  Results obtained by the Wilcoxon test for configurations X and Y. 

value 

values obtained by the test are higher, the 
null hypothesis cannot be rejected, and a proper distinction of the performances of the 

which configuration is 
best cannot be made, appraising both configurations as equal in terms of performance. 

In this paper, a framework to design Evolutionary Spiking Neural Network (ESNNs) was 
ased on an Evolutionary Algorithm known as Grammatical 

Evolution, and is capable of producing SNNs with a wider range of connections types. A 
comparison against a similar framework generating more traditional networks was made to assess 

e generated networks. In general, the proposed method was found to match the 
pattern recognition capabilities of its contender, since accuracy results hardly differ and a 
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Unusual topologies with many kinds of connections were obtained; these were found to portrait 
competitive results in classification tasks, while exhibiting desirable traits such as attribute 
selection (by skipping connections in some of the input features) or complexity reduction (by 
bypassing connections between layers). 
 
On the other hand, the SNN model employed (SRM) and the target specification led to network 
simulations with relatively few spiking activity, rendering recurrent connections likely 
unexplored or unused. As well, the existence of irrelevant connections for the pattern recognition 
process (i.e., those synapses not directly connected to the output unit) was not accounted by the 
evolutionary process, resulting in topologies apt to be "cleaned". 
 
Further development might focus in employing spiking models and/or target specifications 
exhibiting a greater spiking activity, so the intrinsic potential of the recurrent connections could 
be assessed. Moreover, proper adaptations to the framework could aid the specification of 
reservoir computing. 
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